Silas Creek Stream Restoration Project Winston-Salem, North Carolina

Mitigation Plan

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program

Prepared By:

MARCH 2004

Silas Creek Stream Restoration Project Winston-Salem, North Carolina

Prepared For:

NC Department of Environment and Natural Resources, Ecosystem Enhancement Program

March 2004

Mitigation Plan Prepared By Buck Engineering PC

Shawn Wilkerson Project Manager

Karen J. Missell (Project Scientist

Executive Summary

In 2003, the North Carolina Ecosystem Enhancement Program (EEP, formerly the Wetlands Restoration Program) restored 4,287 linear feet of stream along three reaches of Silas Creek and one reach of Buena Vista Branch in Winston-Salem, North Carolina. The reaches are located in Shaffner Park. These streams are tributaries to Muddy Creek (USGS Hydrologic Unit 03040102) and are in the Yadkin River basin.

The existing stream channels had low sinuosity and varying levels of incision due to historic channelization. The stream restoration design was based on natural channel design principals and considered differences in drainage area, adjacent land uses, upstream impoundments, and future development potential. The design addressed the channel dimension, pattern, and profile based on reference reach parameters and hydraulic geometry relationships. When considering design alternatives, every effort was made to create a stable meandering channel with bankfull stage located at the existing floodplain elevation. Where valley or development restrictions did not allow for new channel pattern to be established, the existing incised channels were enhanced by excavating new floodplain benches and installing structures to improve bed features and control channel grade.

The project included enhancement of three reaches on Silas Creek. An additional 114 feet of channel was created on the Buena Vista Branch. A summary of existing and restored reach lengths with restoration design approaches is provided in the table below.

	Existing	Restored	
Reach	Length (ft)	Length (ft)	Restoration Approach
Silas Reach 1	999	999	Instream structures installed to change channel dimension and profile over time and cut new floodplain at bankfull elevation. Priority 3 restoration of incised channel.
Silas Reach 2	897	897	Instream structures installed to change channel dimension and profile over time and cut new floodplain at bankfull elevation. Priority 3 restoration of incised channel.
Silas Reach 3	1771	1771	Instream structures installed to change channel dimension and profile over time and cut new floodplain at bankfull elevation. Priority 3 restoration of incised channel.
Buena Vista	668	782	Change dimension, pattern, and profile. Priority 2/3 restoration.
Total	4,335	4,449	

Table of Contents

1	Intro	oduction	1-1
	1.1	Project Goals	1-1
	1.2	Project Location	
2	Sum	ımary	2-1
	2.1	Project Description and Watershed	2-1
	2.2	Methodologies	2-1
	2.3	Plan View	2-2
	2.4	Points of Contact	2-2
3	Succ	cess Criteria	3-1
	3.1	Dimension	3-1
	3.2	Pattern and Profile	3-1
	3.3	Bed Material Analysis	3-2
	3.4	Photo Reference Sites	3-2
	3.5	Vegetation Survival Plots	3-2
	3.6	Benthic Macroinvertebrate Monitoring	3-3
4	Mon	itoring Schedule and Methods	4-1
5	Miti	gationgation	5-1
	5.1	Mitigation Proposal	5-1
	5.2	Design Summary	5-1
	5.3	Silas Creek Reach 1,2, and 3	5-2
	5.4	Buena Vista	5-4
	5.5	Riparian Restoration Design	5-5
	5.6	Mitigation Credit	5-6
6	Mair	ntenance and Contingency Plans	6-1
7	Refe	rences	7-1

List of Figures

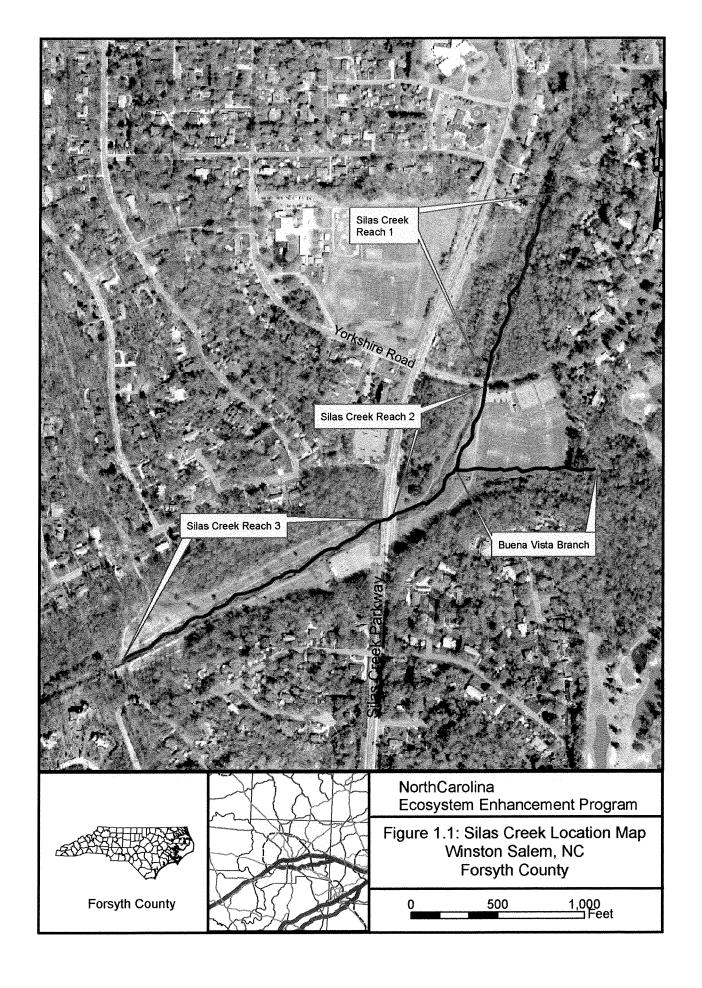
Figure 1.1 Project Location Map	1-2
Figure 2.1 Asbuilt Plans	2-4

List of Tables

Table 2.1 Project Reaches with Existing Lengths and Drainage Areas	2-1
Table 5.1 Mitigation Proposal	5-1
Table 5.2 Natural Channel Design Parameters for Silas Creek	5-3
Table 5.3 Natural Channel Design Parameters for Buena Vista Branch	5-5
Table 5.4 Vegetation Planted.	.5-6

1 Introduction

1.1 Project Goals


The Silas Creek Stream Restoration Project is one component in the enhancement of the Silas Creek watershed. The overall goal is to improve the water quality, habitat, and stability within this urban watershed. As in many developed watersheds, the increase of peak flow events, loss of floodplains and adjacent wetlands, and conventional engineering of streams has caused a substantial loss of the ecological value and has resulted in degraded water quality. By stabilizing channels, preserving and installing riparian buffers, enhancing habitat structure, allowing natural storage capacity for storm flows, and constructing necessary storm water treatment BMPs, the overall watershed health can be restored to Silas Creek.

The objectives of the Silas Creek stream restoration project are to enhance the Silas Creek watershed by:

- Restoring 4,449 LF of channel dimension, pattern, and profile to the extent possible considering the project constraints, watershed characteristics, and data from reference reaches in similar watersheds;
- Improving floodplain functionality by matching floodplain elevation with bankfull stage therefore increasing watershed attenuation and reducing peak flows;
- Establishment of native floodplain vegetation which will allow treatment of diffuse storm flow and nutrient uptake while establishing part of a wildlife corridor in the watershed;
- Improving the natural aesthetics of the stream corridor; and,
- Improving the water quality in the Silas Creek watershed by reducing bank erosion, increasing nutrient storage and uptake, and increasing the dissolved oxygen of the system.

1.2 Project Location

The project site is located in the city of Winston-Salem in the urban Piedmont physiographic region (figure 1.1). The topography is characterized by gently rolling hills and wide alluvial valleys with a dendritic stream pattern.

2 Summary

2.1 Project Description and Watershed

The overall drainage area for the project watershed is 7.2 square miles. The project is divided into 3 reaches on Silas Creek and one reach on the Buena Vista Branch based on drainage area, construction sequence, and road crossings (Figure 2.1). Reach 1 is from the point where Silas Creek enters Shaffner Park to Yorkshire Road. Reach 2 is from Yorkshire Road to Silas Creek Parkway and Reach 3 is from Silas Creek Parkway to the point where Silas Creek flows out of Shaffner Park (Figure 2.1). The project reach lengths and their respective drainage areas are listed in Table 2.1.

Table 2.1 Project Reaches with Existing Lengths and Drainage Areas.

Reach Name and Location	Existing Length (ft)	Drainage Area (mi²)
Silas Reach 1	999	5.4
Silas Reach 2	897	5.4-7.2
Silas Reach 3	1771	7.2
Buena Vista	668	1.4
Total	4,335	

2.2 Methodologies

Buck Engineering used natural channel design principles and considered differences in drainage area, adjacent land uses, and future development potential to redesign the stream to the highest level of restoration within the given constraints. The design addressed the channel dimension, pattern, and profile based on reference reach parameters and hydraulic geometry relationships. When considering design alternatives, every effort was made to create a stable meandering channel with bankfull stage located at the existing floodplain elevation. Where valley or development restrictions did not allow for new channel pattern to be established, the existing incised channels were enhanced by excavating new floodplain benches at the bankfull stage and installing structures to improve bed features and control channel grade.

This process included extensive planning beginning with the existing condition survey. Field data collected included: longitudinal profile and cross sections, bed material analysis, valley morphology, stream classification, channel stability assessment, channel

evolution, riparian conditions, water quality impacts, and photographs. Other data analyzed included watershed analysis and land use survey (historical and present). The second step in the planning process was an analysis of stream potential and restoration alternatives (priority levels of restoration, urban considerations, and built-out scenarios). Design procedures were conducted concurrently with planning. These included reference reach analysis, verification of bankfull using the rural and urban Piedmont regional curves, restored channel morphology design (channel dimension, pattern, and profile), sediment transport analysis, structure design and placement, streambank stabilization/bioengineering, design of an erosion and sediment control plan, flood impact analysis, and completion of design plans. Finally, Buck Engineering conducted construction management including field layout, construction supervision, preparation of the as-built survey, and collection of photographs.

2.3 Plan View

See separate set of plan sheets included (Figure 2.1)

2.4 Points of Contact

Design Firm:

Buck Engineering
Point of Contact – Mr. Shawn Wilkerson (swilkerson@buckengineering.com)
1347 Harding Place, Suite 100
Charlotte, North Carolina 28204
(704) 334-4454 x101
Fax (704) 334-4492

Construction Firm:

North State Environmental, Inc Point of Contact – Darrell Westmoreland (<u>darrell@nsenv.com</u>) 2889 Lowery St. Suite B Winston Salem, NC 27101 336-725-2010 Fax (336) 375-1801

NC EEP Project Manager:

Point of Contact – Mr. Jeff Jurek (<u>Jeff.Jurek@ncmail.net</u>) 1619 Mail Service Center Raleigh, North Carolina 27699-1619 (919) 733-5208 Fax (919) 733-5321

3 Success Criteria

Environmental components monitored in this project are those that allow an evaluation of channel stability and riparian survivability. Specifically, the success of channel modification, erosion control, seeding, and woody vegetation plantings will be evaluated. This will be accomplished through the following activities for 5 years after the project is built.

3.1 Dimension

Nine permanent cross-sections were established on Silas Creek for a total of 5 riffles and 4 pools. Two permanent cross-sections, a riffle and a pool, were established on Buena Vista. Each cross-section is marked on both banks with permanent pins set in concrete to establish the exact transect used. A common benchmark is used for cross-sections to facilitate easy comparison of year-to-year data. The as-built cross-section survey includes points measured at all breaks in slope, including top of bank, bankfull, and thalweg. In the future, points will be measured at all breaks and slope, as well as at three foot intervals across the section. This will ensure that points are taken at the same locations each year. Riffle cross-sections will be classified using the Rosgen stream classification system (Figures 2.1a-d).

<u>Success Criteria</u>: Minor changes such as settling, increase in vegetative density, deposition along the banks, decrease in width/depth ratio, and a decrease in cross sectional area may occur. Such changes are indicative of the stream moving towards stability. Larger shifts in cross-sectional area should be evaluated to determine if they represent a movement toward a more unstable condition such as down-cutting, erosion, bank failure and mitigation strategies should be developed.

3.2 Pattern and Profile

A longitudinal profile was completed after construction and will be repeated every two years for a total of five years (for a total of 4 times). Measurements include thalweg, water surface, bankfull, and top of low bank. Each measurement is taken at the head of feature, e.g. riffle, run, pool, and glide, and the maximum pool depth. Cross section pins shall serve as permanent benchmarks. The survey is also used to calculate sinuosity.

<u>Success Criteria</u>: The as-built longitudinal profiles should show that the bedform features are remaining stable, e.g., they are not aggrading or degrading over the 5-year period. Short term aggradation/degradation may occur depending on the peak annual discharge. The gravel bed pools should remain deep with flat water surface slopes and the riffles should remain steeper and shallower than the pools. Bedforms observed should be consistent with those observed in "E" and "Bc" type channels. The pattern should not change and there should be no change in sinuosity. The pool/riffle sequence should also remain constant.

3.3 Bed Material Analysis

Annual pebble counts will be performed on all gravel-bed project reaches based on the percent of pools and riffles.

<u>Success Criteria</u>: Established D50 and D85 should increase in coarseness in riffles, and increase fineness in pools.

3.4 Photo Reference Sites

Photographs used to evaluate restored sites will be made with a 35-mm camera using slide film or a digital camera. Reference sites were photographed after construction and will be taken once a year for at least 5 years following construction. Reference sites were marked with wooden stakes and were located on as-built drawings.

<u>Longitudinal reference photos</u>: Photographs will be taken looking downstream at delineated locations (figure 2.1). Reference photo locations were marked and described for future reference. Points are close enough together to provide an overall view of the reach. When modifications of stream position have to be made due to obstructions or other reasons, the position will be noted along with any landmarks and the same position used in the future.

<u>Lateral reference photos</u>: Reference photo transects will be taken at each permanent cross-section. Photographs will show both banks at each cross-section. The water line will be located in the lower edge of the frame and as much of the bank as possible included in each photo. Photographers should make an effort to consistently maintain the same area in each photo over time. These locations were also marked with wooden stakes.

<u>Success Criteria</u>: Photographs will be used to qualitatively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation and effectiveness of erosion control measures. Longitudinal photos should indicate the absences of developing bars within the channel or an excessive increase in channel depth. Lateral photos should not indicate excessive erosion or continuing degradation of the bank over time. A series of photos over time should indicate successional maturation of riparian vegetation. Vegetative succession should include initial herbaceous growth, followed by increasing densities of woody vegetation and then ultimately a mature overstory with herbaceous understory.

3.5 Vegetation Survival Plots

Survival of live stakes and bare root woody vegetation will be evaluated using two plots, one along Silas Creek and the other along Buena Vista Branch. Evaluations of live stake and bare root woody vegetation survival will continue for at least 5 years. When

vegetation does not survive a determination will be made as to the need for replacement; in general if greater than 25% die, replacement will be done.

Success Criteria: The interim measure of vegetative success will be the survival of at least 320 3-year old planted trees per acre at the end of year three of the monitoring period. The final vegetative success criteria will be the survival of 260 5-year old planted trees per acre at the end of year five of the monitoring period. In addition, for the five year monitoring period, the presence of volunteer facultative softwood species such as red maple, sweet gum, and loblolly pine will be limited to less than 10% each of the total number of trees utilized to determine success. These trees may contribute more than 10% of the total trees on the site, but they will not constitute more than 10% each of the 260 trees per acre.

3.6 Benthic Macroinvertebrate Monitoring

Benthic macroinvertebrate monitoring will be conducted by the NC Division of Water Quality.

4 Monitoring Schedule and Methods

Monitoring will be conducted annually for five years. Buck Engineering conducted the as-built survey in October 2003 and annual surveys will be conducted in October starting in 2004 and ending in 2008.

The cross sections will be surveyed each year using a Total Station or level between the permanent cross section pins. During each monitoring event, points in each cross-section survey should be taken at breaks in slope and at each three foot interval. This will ensure that points are taken in the same locations along the cross-sections each year. This will include a photo of each cross section taken from the upstream side looking downstream ensuring both banks are visible in the photograph.

The longitudinal survey will be done using a Total Station or level for the first year and then every two years for a total of four times (As-built is completed, then October 2004, 2006, and 2008).

The photographs will be taken every year. They include the cross sections listed above as well as longitudinal photographs taken from the photo locations listed on the plan view. These supplement the cross section photos to ensure the entire reach is covered.

Vegetation survival plots will be counted annually. The plots for both bare root plantings and live stakes are listed on the plan view. For success criteria, the 3-year period is through October 2006, and the 5-year period is through September 2008.

5 Mitigation

5.1 Mitigation Proposal

The following table lists the proposed mitigation available after completing the project.

Reach **Restored Length** Category (ft) 999 Enhancement I Silas Reach 1 897 Enhancement I Silas Reach 2 1771 Enhancement I Silas Reach 3 782 Restoration Buena Vista Total 4,449

Table 5.1 Proposed Mitigation.

5.2 Design Summary

For each stream reach in the Silas Creek watershed project, the proposed natural channel design is the highest level of restoration feasible given the valley type, stream type, land use and urban constraints. For the incised reaches, selection of restoration type follows Rosgen's priority restoration approaches for incised streams (Rosgen, 1997) with the overriding objective of re-establishing contact between the channel and a floodplain. For the purposes of this discussion the four Rosgen restoration approaches have been defined below in order of decreasing priority:

- <u>Priority 1</u> Re-establish the channel on a previous floodplain (e.g., raise channel elevation); meander new channel to achieve dimension, pattern, and profile characteristic of a stable stream for the particular valley type; fill or isolate existing incised channel.
- Priority 2 Establish a new floodplain for the existing bankfull elevation (e.g., excavate a new floodplain); meander channel to achieve dimension, pattern, and profile characteristic of a stable stream for the particular valley type; fill or isolate existing incised channel.
- <u>Priority 3</u> Establish a new floodplain at the existing bankfull elevation (e.g., using bankfull benches); leave existing channel in place; use in-stream structures to dissipate energy through a step/pool channel type.

• <u>Priority 4</u> – Stabilize the channel in place using in-stream structures and bioengineering to decrease streambed and streambank erosion.

5.3 Silas Creek Reach 1, 2 and 3

Silas Creek is constrained throughout the project area by a combination of sewer lines, walking paths, soccer fields, footbridges, and road crossings. As a result of these constraints, relocation of the Silas Creek channel was not feasible. The proposed natural channel design for the Silas Creek reaches was based on a combination of a Rosgen Priority 3 and Priority 4 techniques. This approach was intended to allow for better bankfull-floodplain connectivity, encourage positive changes to occur in the channel cross-section and to create diversity in bedform.

Bankfull benches were excavated intermittently along both sides of the channel to create a new active floodplain or increase the size of existing active floodplains. This design approach increased entrenchment ratios along the reach, thus reducing near bank stresses during large flows and allowing for sediment to be stored outside of the channel. In conjunction with benching, cross vanes and constructed riffles were used throughout the existing channel to set and control grade as well as encourage narrowing and steepening of the riffles. Below the culverts, step-pool structures were used to raise the bed elevation, thus increasing overall channel slope and increasing aeration and coarsening of riffle substrate. Double wing deflectors were constructed to narrow the low flow channel where it is over-wide as well as stabilize the existing banks by reducing near bank stress. J-hook and single vanes and root wads were used to stabilize the banks on the outside of meander bends. All of these structures were spaced to mimic the pool to pool spacing ratio of the Silas Creek reference reach. The spacing of these structures allows Silas Creek to dissipate energy through this series of steps thus decreasing shear stresses and bank erosion (figure 2.1).

By installing cross-vanes, constructed riffles, wing deflectors, and j-hook vanes, Silas Creek's form will change with time. It is expected that diversity in bedform will allow for coarsening of riffles and deepening of pools thus improving habitat and aeration. The various structures will encourage the bankfull channel to narrow decreasing the width to depth ratio over time and increasing the efficiency of the channel. So, although Table 5.2 below does not show direct change in many of the design parameters, by locating structures above the bed elevation, the channel will quickly aggrade in the riffle sections and deepen in the pool sections. This will allow, as seen in the as-built survey, for smaller riffle cross-sections and larger riffle cross-sections as well as a more varied profile.

Table 5.2 Natural Channel Design Parameters for Silas Creek (Reaches 1,2,&3 are represented by the same dataset).

Par	ameters	Existing Reaches 1,2,&3	Design Reaches 1,2,&3
	gen Stream Type	B4c	B4c
Dra	inage Area (sq mi)	7.2	7.2
Rea	ch Length (ft)	3667	3667
	Bankfull Width (ft)	40	40
	Bankfull Mean Depth (ft)	3.5	3.5
	Width/Depth Ratio (ft)	11.7	11.7
	Bankfull Area (sq ft)	138	138
	Bankfull Mean Velocity (ft/sec)	4.35	4.35
	Bankfull Discharge (cfs)	600	600
	Bankfull Max Depth (ft)	4.5	4.5
lo	Width of Floodprone Area (ft)	68-272	120-272
Dimension	Entrenchment Ratio	1.7-6.8	3.0-6.8
me	Max Pool Depth (ft)	6.8	6.8
Di	Ratio of Max Pool Depth to Bankfull Depth	1.2	1.2
	Pool Width (ft)	35.25	35.25
	Ratio of Pool Width to Bankfull Width	0.9	0.9
	Pool to Pool Spacing (ft)	82-189	72 - 144
	Ratio of Pool to Pool Spacing to Bankfull Width	2-4.8	2 - 4
	Bank Height Ratio	1.6	1.0
	Meander Length (ft)	N/A*	N/A*
	Meander Length Ratio	N/A*	N/A*
и.	Radius of Curvature (ft)	N/A*	N/A*
attern	Radius of Curvature Ratio	N/A*	N/A*
Pa	Meander Belt Width (ft)	N/A*	N/A*
	Meander Width Ratio	N/A*	N/A*
	Sinuosity	1.03	1.03
Profile	Valley Slope (ft/ft)	0.0029	0.0029
	WS Slope (ft/ft)	0.0025	0.0025
	Pool Slope (ft/ft)	0.0005	0.0005
	Ratio of pool slope to WS slope	0.19	0.19
	Riffle Slope	0.0028	0.0028
	Riffle Slope Ratio	1.12	1.12

5.4 Buena Vista

The proposed natural channel design for Buena Vista Branch was based on a combination of a Rosgen Priority 2 and Priority 3 approach. A new meandering E4 channel was constructed from Station 10+00 to 16+00 at a lower elevation than the existing terrace. A floodplain was excavated along both sides of the channel. The rest of Buena Vista Branch was left at its existing location because of the presence of sewer lines, adjacent soccer fields, and pedestrian footbridge crossings. Constructed riffles, rock vanes and root wads were used to stabilize the new and existing channel.

At the downstream end of the project, Buena Vista Branch was highly incised as a result of a head-cut moving up from Silas Creek. This section was stepped down to the bed elevation of Silas Creek using a step/pool structure. The step/pool design has been modified from earlier designs to minimize the drop between steps (<= 0.5 ft) and prevent piping.

Table 5.3. Natural channel design parameters for Buena Vista Branch.

Parameters		Existing	Design
Rosgen Stream Type		E4	E4
Drainage Area (sq mi)		1.4	1.4
Reach Le	ngth (ft)	668	782
	Bankfull Width (ft)	14.5	17.6
	Bankfull Mean Depth (ft)	2.11	1.8
	Width/Depth Ratio	6.86	10
	Bankfull Area (sq ft)	30.6	32.2
	Bankfull Max Depth (ft)	3.21	2.6
	Width of Floodprone Area (ft)	20-119	60-160
L _O	Entrenchment Ratio	1.4 - 8.2	3.4 – 9.1
nsic	Max Pool Depth (ft)	2.76	3.4
Dimension	Ratio of Max Pool Depth to Bankfull Depth	1.3	1.9
	Pool Width (ft)	15.8	22.9
	Ratio of Pool Width to Bankfull Width	1.09	1.3
	Pool to Pool Spacing (ft)	45 - 160	60 - 100
	Ratio of Pool to Pool Spacing to Bankfull Width	3.1 - 11	3.5 - 6
	Bank Height Ratio	1.8	1.0
	Meander Length (ft)	72-105	120 - 200
	Meander Length Ratio	5-7.2	7 - 11
E	Radius of Curvature (ft)	25-100	32 - 53
le Pattern	Radius of Curvature Ratio	1.7-6.9	2.0 - 3.0
	Meander Belt Width (ft)	15.4-23.8	53 - 88
	Meander Width Ratio	1.1-1.6	3 - 5
	Sinuosity	1.09	1.22
	Valley Slope (ft/ft)	0.0111	0.011
	WS Slope (ft/ft)	0.0107	0.009
Profile	Pool Slope (ft/ft)	0.0025	0.0034
<u> </u>	Ratio of Pool Slope to WS Slope	0.23	0.38

5.5 Riparian Restoration Design

A combination of native herbaceous and woody vegetation was planted in the riparian buffer along Silas Creek. The buffer width ranged between 15 and 25 feet depending on space restrictions due to park boundaries. This buffer width is in accordance with the City of Winston-Salem's stream buffer recommendations (1999) which include a variance stating that a stream buffer shall not exceed 25% of the available land space on publicly owned property with a "cross sectional land space" less then 400 feet. In addition, areas around utilities in the buffer zone were left free of woody vegetation to a

minimum length of 10 feet and a maximum length of 30 feet. These clearings also act as public access areas along with a path (10-15 feet wide) leading to and from the footbridge. All access areas may need to be periodically maintained by the City of Winston-Salem (Winston-Salem 1999).

Native plantings included live stakes and brush mattresses on the stream banks, bare root woody vegetation in the riparian buffer, 2 inch caliper B&B trees along the floodplain banks, and riparian seeding within the buffer. Species planted are listed in table 5.4.

Table 5.4. Vegetation Planted.

B&B Trees

D&D Hees	
River Birch	Betula nigra
Sycamore	Platanus
	occidentalis
Willow Oak	Quercus phellos
Red Oak	Quercus rubra
Flowering Dogwood	Cornus florida
Black Tupelo	Nyssa sylvatica

Live Stakes

Silky Willow	Salix sericea
Silky Dogwood	Cornus amomum

Bare Root Woody Vegetation

Bare Root Woody Veg	etation
River Birch	Betula nigra
Shagbark Hickory	Carya ovata
Sycamore	Platanus
	occidentalis
Willow Oak	Quercus phellos
Southern Sugar	Acer floridanum
Maple	
Red Chokeberry	Aronia arbutifolia
Common Pawpaw	Asimina triloba
Ironwood	Carpinus
	caroliniana
Spicebush	Lindera benzoin

5.6 Mitigation Credit

The mitigation credit proposal will be completed by the NC Ecosystem Enhancement Program. Buck Engineering has provided a plan view showing reaches and sub-reaches for their use.

6 Maintenance and Contingency Plans

Future maintenance concerns noted during monitoring shall be reported to the NCEEP Project Manager.

7 References

- City of Winston-Salem, NC, Stormwater Management Division. 1999. Why are our Stream Banks "growing up" in Winston-Salem? Available from World Wide Web: (http://www.ci.Winston-Salem.nc.us/stormwater/why are stream banks.htm)
- Clinton, D. R., G. D. Jennings, W. A. Harman, J. M. Patterson, L. O. Slate, and J. Williams. 1999. North Carolina reference stream channel morphology relationships. In: Olson, D. S., and J. P. Potyondy (Eds.). Wildland Hydrology, Proc. AWRA Specialty Conf., Bozeman, MT. pp. 393-400.
- Doll, Barbara A., Dani E. Wise-Frederick, Carolyn M. Buckner, Shawn D. Wilkerson, William A. Harman and Rachel E. Smith. 2000. Hydraulic Geometry Relationships for Urban Streams Throughout the Piedmont of North Carolina. Riparian Ecology and Management in Multi-Land Use Watersheds. American Water Resources Association Summer Symposium. Portland, Oregon. Dates: September 28-31, 2000. pp: 299-304.
- Dunne, T. and L. B. Leopold, 1978. Water in Environmental Planning. New York: W. H. Freeman and Company.
- Federal Interagency Stream Restoration Working Group (FISRWG). 1998. Stream Corridor Restoration: Principles, Processes and Practices. National Technical Information Service, Springfield, VA.
- Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and R.E. Smith, 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. Wildland Hydrology. AWRA Symposium Proceedings. Edited by: D.S. Olsen and J.P. Potyondy. American Water Resources Association. June 30-July 2, 1999. Bozeman, MT.
- Harman, W.A., June 2001. Smith and Austin Creeks Stream Mitigation Plan and Design Wake Forest, North Carolina prepared for the North Carolina Department of Environment and Natural Resources Wetlands Restoration Program. Buck Engineering, Cary, NC.
- Harmel, R. D., C. T. Haan, and R. C. Dutnell. 1999. Evaluation of Rosgen's streambank erosion potential assessment in Northeastern Oklahoma. Journal AWRA 35(1):113-121.
- Harrelson, C. C., C. L. Rawlins, and J. P. Potyondy. 1994. Stream Channel Reference
 Sites: An Illustrated Guide to Field Technique. General Technical Report RM-245.
 USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort
 Collins, CO.

- Jelenevski, P., June 2001. Smith and Austin Creeks Riparian Restoration Design (Draft) prepared for the North Carolina Department of Environment and Natural Resources Wetlands Restoration Program. Soil and Environmental Consultants, Inc., Raleigh, NC.
- Jennings, G. D., and W. A. Harman. 2000. Stream corridor restoration experiences in North Carolina. ASAE Paper 002012, ASAE Annual International Meeting, Milwaukee, WI. Am. Soc. Agr. Eng., St. Joseph, MI.
- Leopold, L. B., M. G. Wolman and J. P. Miller. 1992. Fluvial Processes in Geomorphology. Dover Publications, Inc. New York, NY.
- Leopold, L.B., 1994. A View of the River. Harvard University Press, Cambridge, Mass.
- North Carolina Division of Water Quality. 1997. Standard Operating Procedures Biological Monitoring. North Carolina Department of Environment and Natural Resources, Raleigh, NC.
- North Carolina Division of Water Quality. 2000. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Stream Restoration Projects. North Carolina Department of Environment and Natural Resources, Raleigh, NC.
- Patterson, J. M., D. R. Clinton, W. A. Harman, G. D. Jennings, and L. O. Slate. 1999. Development of streambank erodibility relationships for North Carolina stream. In: Olson, D. S., and J. P. Potyondy (Eds.). Wildland Hydrology, Proc. AWRA Specialty Conf., Bozeman, MT. pp. 117-123.
- Rinaldi, M. and P.A. Johnson, 1997. Stream Meander Restoration. Journal of the American Water Resources Association 33:855-866.
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L., 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, Colo.
- Rosgen, D.L., 1998. The Reference Reach a Blueprint for Natural Channel Design.
 Draft Presented at ASCE Conference on River Restoration in Denver Colorado March, 1998. ASCE. Reston, VA.
- Schafale, M.P. and A.S. Weakley, 1990. Classification of the Natural Communities of North Carolina. Third Approximation. NCDEHNR Natural Heritage Program, Raleigh, NC.
- Wilkerson, S.D., Karl G. Linden, James D. Bowen, Craig J. Allan. 1998. Development and Analysis of Hydraulic Geometry Relationships for the Urban Piedmont of North Carolina. University of North Carolina at Charlotte.

- Williams, G.P., 1986. River Meander and Channel Size. Journal of Hydrology 88:147-164.
- Wilson, M.P. 1983. Erosion of Banks Along Piedmont Urban Streams. Water Resources Research Institute of the University of North Carolina.
- Wolman, M.G., 1954. A Method of Sampling Course River-Bed Material. Transactions of American Geophysical Union 35: 951-956.

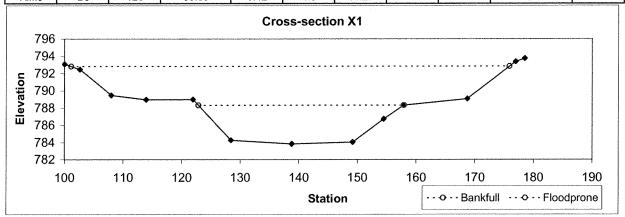
Silas Creek Cross Section Summary

Silas Creek

SKS	
Cross Section 1 –Pool	Photo Point 85-86
Cross Section 2 –Pool	Photo Point 87-88
Cross Section 3 –Riffle	Photo Point 89-90
SR2	
Cross Section 4 –Riffle	Photo Point 91-92
Cross Section 5 –Pool	Photo Point 93-94
Cross Section 6 –Riffle	Photo Point 95-96
SR1	
Cross Section 7 –Pool	Photo Point 97-98
Cross Section 8 –Pool	Photo Point 99-100
Cross Section 9 –Riffle	Photo Point 101-102

Buena Vista Branch

BVB


CD3

Cross Section 1 – Rifle	Photo Point 109-110
Cross Section 2 – Pool	Photo Point 111-112

Notes:

- 1. All cross sections are marked on each bank by permanent pins set in concrete.
- 2. All pins are shown on the plan views (with North Carolina State plane and elevation coordinates) and are marked with wooden stakes with orange flagging tape.
- 3. Photo point locations are shown on the plan views and are marked with wooden stakes with orange flagging tape.

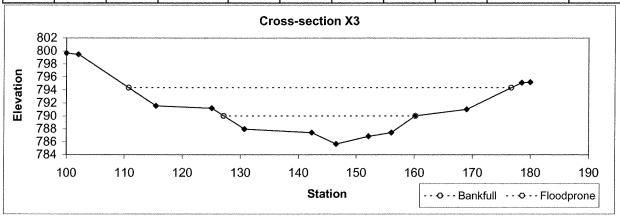
Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	Bc	120	35.09	3.42	4.5	10.27	2.1	2.1	788.32	793.08

Sections Challenge Visioning	anno como como de la c	Name - Additional Property Co.			0.00
Pt#	North	East	Elevation	Note	Station
535	858179.9	1612523	793.0772	X1LBMON	100
536	858182.2	1612522	792.4601	X1TOP	102.619
537	858187	1612520	789.4635	X1TOE	107.9904
538	858192.4	1612517	788.9637	X1	113.9022
539	858199	1612512	788.9809	X1LBKFL	121.9013
540	858204.7	1612509	784.2493	X1LCHNL	128.4169
541	858213.5	1612504	783.8209	X1TW	138.8105
543	858222.5	1612499	784.0227	X1RCHNL	149.2188
544	858228	1612498	786.7033	X1RIB	154.4725
545	858230.6	1612495	788.3179	X1RBKFL	157.9085
546	858240.5	1612491	789.0581	X1TOE	168.75
547	858247.9	1612487	793.3656	X1TOP	176.954
548	858249.3	1612487	793.7237	X1RBMON	178.5204

Bankfull Line						
Station I	Elevation					
122.81	788.32					
157.91	788.32					

Floodprone	Line
Station I	Elevation
101.11	792.81
175.91	792.81

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool		135.4	33.77	4.01	7.1	8.42	1.7	2	788.71	793.82

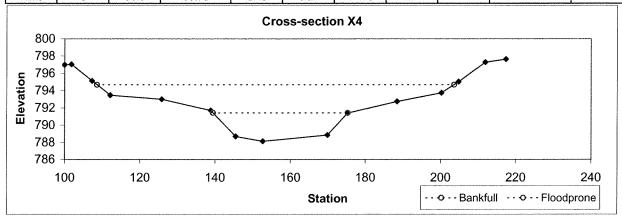


Pt#	North	East	Elevation	Note	Station
453	858260.3	1612686	794.014	X2LBMON	100
454	858261.4	1612685	793.8766	X2TOP	-101.382
455	858266.8	1612683	790.1689	X2	107.3381
456	858271.1	1612680	787.3724	X2TOE	112.3512
457	858271.2	1612680	787.3404	X2LBKFL	112.5217
458	858277.4	1612679	784.4642	X2LCHNL	118.6349
459	858284.7	1612674	781.8116	X2TW	127.137
467	858288.1	1612680	781.6151	X2MAXPO	127.3759
461	858292.7	1612670	784.3453	X2RCHNL	136.2683
462	858299.2	1612666	788.7147	X2RBKFL	143.7153
463	858311	1612660	789.8746	X2TOE	156.9067
464	858314.8	1612658	791.9378	X2	161.2306
465	858318.4	1612655	793.8155	X2TOP	165.6296
466	858320	1612654	793.7601	X2RBMON	167.5006

Bankfull Line)
Station E	levation
109.94	788.71
143.72	788.71

Floodprone Line					
Station E	levation				
100	795.81				
167.5	795.81				

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	Bc	82.8	33.08	2.5	4.34	13.22	2.2	2	790	795.2

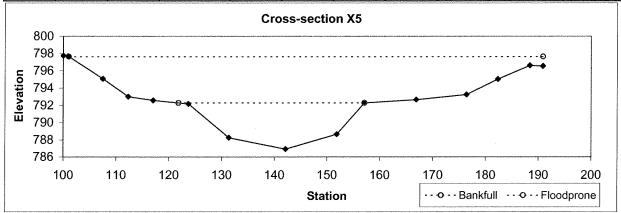


Pt#	North	East	Elevation	Note	Station
403	858571.2	1613279	799.6801	X3RBMON	100
402	858572.9	1613278	799.4704	X3TOP	102.0547
401	858585.5	1613273	791.5616	X3TOE	115.4429
400	858593.6	1613268	791.175	X3LBKFL	125.0646
399	858598.6	1613265	787.9516	X3	130.6886
398	858608.8	1613260	787.4076	X3	142.2982
396	858612.3	1613258	785.6679	X3TW	146.5153
395	858616.9	1613254	786.8567	X3	152.1108
394	858620.2	1613252	787.4272	X3	156.0089
393	858623.4	1613249	790.0047	X3RBKFL	160.1842
392	858631.3	1613246	791.0008	X3TOE	169.0074
391	858639.6	1613241	795.1173	ХЗТОВ	178.4812
390	858640.6	1613240	795,2014	X3LBMON	179.9481

Bankfull Line	
Station Ele	vation
127.11	790
160.18	790

Floodprone	Line
Station E	levation
110.74	794.34
176.7	794.34

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	С	86.9	35.79	2.43	3.27	14.73	2.7	2.7	791.41	797.04

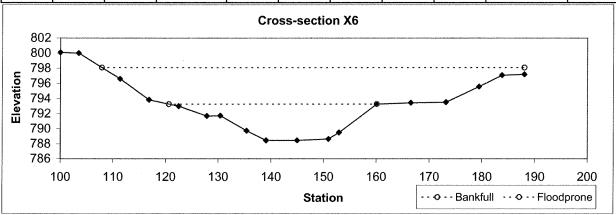


Pt#	North	East	Elevation	Note	Station
1921	858894.9	1613782	796.989	X4 LMON	100
1920	858895.6	1613780	797.0435	X4 TOP	101.8332
1919	858898.1	1613775	795.1265	X4	107.2653
1918	858899.9	1613771	793.4633	X4 TOE	112.1059
1917	858907.3	1613759	792.9999	X4	125.8455
1916	858912.4	1613747	791.6926	X4 LBKFL	138.8304
1915	858916.6	1613742	788.6765	X4 LCHNL	145.4644
1913	858921.1	1613736	788.1315	X4 TW	152.7098
1912	858929.1	1613721	788.842	X4 RCHNL	169.8543
1911	858931.4	1613716	791.4064	X4 RBKFL	175.2479
1910	858939.2	1613705	792.7439	X4	188.4145
1909	858944.9	1613695	793.7405	X4 TOE	200.2662
1908	858947.7	1613691	795.0251	X4	204.8274
1907	858952	1613686	797.2766	X4 TOP	211.9187
1906	858954.7	1613681	797 6284	X4 RMON	217 3696

Bankfull Lin	е
Station I	Elevation
139.46	791.41
175 25	791 41

Floodprone Line					
Station	Elevation				
108.56	794.68				
203.61	794.68				

	Stream			BKF	Max BKF					
Feature	Туре	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool		119.8	35.27	3.4	5.36	10.39	1.8	2.5	792.27	796.62

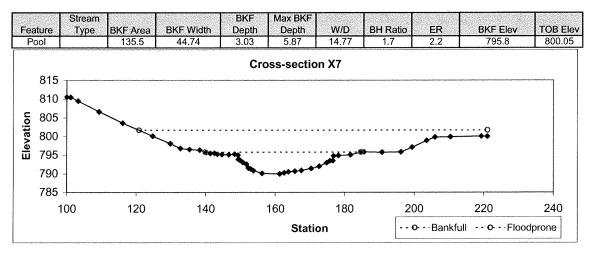


Pt#	North	East	Elevation	Note	Station
1939	859015.8	1613823	797.7401	X5 LMON	100
1938	859016.1	1613822	797.6844	X5 TOP	100.8857
1937	859018.5	1613816	795.0667	X5	107.5112
1936	859020.3	1613811	792.9919	X5 TOE	112.2833
1935	859021.9	1613807	792.5657	X5	117.0449
1934	859021.4	1613799	792.158	X5 LBKFL	123.7048
1933	859026	1613793	788.2296	X5 LCHNL	131.3716
1931	859030.8	1613783	786.9155	X5 TW	142.1228
1930	859037.6	1613776	788.6442	X5 RCHNL	151.8445
1929	859040.4	1613771	792.2725	X5 RBKFL	157.1061
1927	859045.7	1613763	792.6487	X5	166.909
1926	859051.6	1613755	793.2467	X5 TOE	176.4046
1925	859055.1	1613750	795.0279	X5	182.3739
1924	859058.3	1613745	796.6204	X5 TOP	188.4181
1923	859059.3	1613743	796.5314	X5 RMON	190.9047

Bankfull Li	ne
Station	Elevation
121.83	792.27
157.11	792.27

Floodprone Line					
Station	Elevation				
101.02	797.63				
190.9	797.63				

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth		BH Ratio	ER	BKF Elev	TOB Elev
Riffle	Bc	115.7	39.47	2.93	4.82	13.46	1.8	2	793.26	797.2

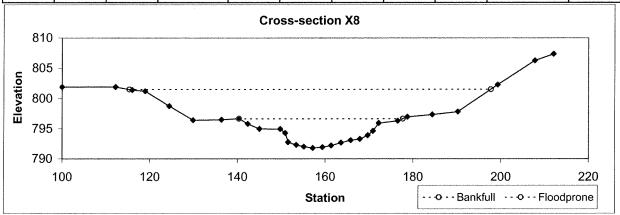


Pt#	North	East	Elevation	Note	Station
1961	859163.1	1613895	800.083	X6 LMON	100
1960	859164.7	1613892	799.9951	X6 TOP	103.4704
1959	859168	1613885	796.5904	X6	111.3662
1958	859170.5	1613880	793.8286	X6 TOE	116.8627
1957	859172.9	1613875	792.973	X6	122.5085
1956	859175.8	1613871	791.6834	X6	127.8782
1955	859177	1613868	791.7329	X6 LBKFL	130.3945
1954	859179.8	1613864	789.716	X6 TOE	135.4065
1953	859182	1613861	788.4384	X6 LCHNL	139.0816
1951	859185.9	1613856	788.4518	X6 TW	145.0021
1950	859188.2	1613851	788.6331	X6 RCHNL	150.9557
1949	859188.5	1613849	789.4886	X6 TOE	152.9582
1946	859190.8	1613842	793.2613	X6 RBKFL	160.0778
1945	859192.8	1613836	793.4185	X6	166.5508
1944	859194.7	1613829	793.5162	X6 TOE	173.1504
1943	859197.6	1613824	795.5747	X6	179.4423
1942	859199.6	1613820	797.0827	X6 TOP	183.8044
1941	859201.9	1613816	797.2011	X6 RMON	188.0396

Bankfull Lir	ne
Station	Elevation
120.61	793.26
160.08	793.26

Floodprone Line					
Station	Elevation				
107.9	798.08				
100 04	700.00				

Cross-section Data:

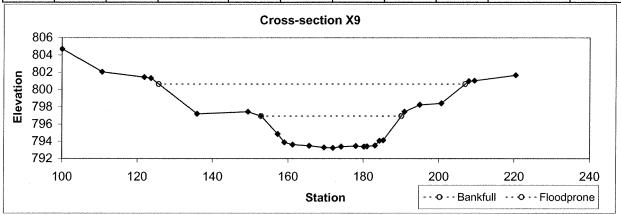


D14	Nt-Ab I	I	Claudian Note	Challan
Pt#	North	East	Elevation Note	Station
2675	859911.5	1614010	810.5368 X7RPIN	100
2674	859910.9	1614011	810.4303 X7 809.4452 X7	101.0923 103.237
2673	859909.8	1614012		
2672	859907.3	1614018	806.6361 X7	109.2909
2671	859904.9	1614024	803.584 X7	116.0965
2670	859901.6	1614032	800.0816 X7	124.7221
2669	859900.5	1614037	798.0853 X7	129.843
2668	859899.6	1614040	796.7652 X7	132.6584
2667	859898.7	1614043	796.5091 X7	135.3198
2666	859897.5	1614045	796.3263 X7 RBKF	138.2746
2665	859896.3	1614047	795.7142 X7	140.2005
2664	859895.9	1614048	795.4358 X7	141.3447
2663	859895.5	1614049	795.4761 X7	142.4667
2662	859894.9	1614050	795.222 X7	143.3395
2661	859894.1	1614051	795.1466 X7	144.6912
2660	859893	1614053	795.0845 X7	146.6193
2659	859892	1614054	795.2149 X7	148.3296
2658	859891.1	1614055	794.9622 X7	149.2839
2657	859891	1614055	793.8392 X7	149.4097
2656	859890.8	1614055	793.6967 X7	149.8388
2655	859890.1	1614056	793.0525 X7 REWW	
2654	859889.4	1614057	792.5739 X7	151.7359
2653	859889.3	1614057	791.5435 X7	152.2465
2652	859889	1614058	791.3381 X7	152.9405
2651	859888.6	1614059	790.861 X7	153.7762
2650	859887.3	1614061	790.1131 X7 TW	156.2571
2649	859887.8	1614066	789.9316 X7	161.2551
2648	859887.4	1614068	790.2401 X7	162.5986
2647	859886.9	1614069	790.4982 X7	163.8501
2646	859886.7	1614071	790.6631 X7	165.6561
2645	859886.2	1614072	790.8947 X7	167.576
2644	859885.8	1614075	791.3898 X7	170.3818
2643	859885.7	1614078	792.0167 X7	172.7111
2642	859885.1	1614080	792.9572 X7 LEW	174.8254
2641	859885	1614081	793.4616 X7	175.7326
2640	859884.8	1614082	793.5191 X7	176.6212
2639	859884.7	1614082	794.798 X7	176.8505
2638	859884.5	1614083	794.8717 X7	178.2106
2637	859883.2	1614086	795.0689 X7	181.6887
2636	859882.1	1614089	795.8045 X7 BKF	184.6575
2635	859881.5	1614090	795.8247 X7 795.7489 X7	185.5699 190.7245
2634	859881.6	1614095 1614101	795.7469 X7 795.8242 X7	190.7245
2633	859880			
2632	859878.8	1614103 1614108	797.0801 X7	199.3436 203.6029
2631	859878	1614108	798.8781 X7 799.7848 X7	203.6029
2630	859877.7 859876.2	1614110	799.7848 X7 799.8551 X7	205.9838
2629 2628	859876.2	1614114	799.8551 X7 800.0513 X7	210.4278
2628 2627	859874.4 859873.6	1614123	799.9962 X7LPIN P	
2021	0.09073.0	1014125	199.9902 AILPIN PO	221.0200

Bankfull Lin	е
Station	Elevation
139.92	795.8
184.66	795.8

Floodprone Line					
Station	Elevation				
120.79	801.68				
221.03	801.68				

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool		98.9	37.31	2.65	4.84	14.08	2.1	2.2	796.65	801.9

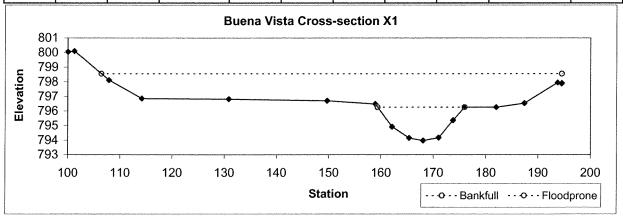


D: # 1			F	[0; e 1
Pt #	North	East	Elevation Note	Station
2527	860088.8	1614203	801.8979 X8 EOP	100
2528	860092.2	1614191	801.8888 X8 BM	112.2216
2529	860093.1	1614187	801.4033 X8	116.0089
2530	860094.1	1614184	801.2088 X8 HT	118.9344
2531	860095.5	1614179	798.7352 X8	124.4479
2532	860096.4	1614174	796.3964 X8 LT	129.8781
2533	860098.1	1614167	796.491 X8 LT	136.3834
2534	860099	1614163	796.658 X8 BKF	140.3448
2535	860099.3	1614161	795.8002 X8	142.3545
2536	860099.9	1614159	794.9755 X8	145.0432
2537	860101.3	1614154	794.9408 X8	149.753
2538	860101.2	1614153	794.2751 X8	150.8921
2539	860101.4	1614152	792.7728 X8 LEW	151.552
2540	860102	1614151	792.3173 X8	153.4082
2541	860102.2	1614149	792.0309 X8	155.1136
2542	860102.6	1614147	791.8099 X8 TW	157.1681
2543	860103.4	1614145	791.9401 X8	159.3831
2544	860103.9	1614143	792.2062 X8	161.3565
2545	860104.5	1614141	792.6947 X8	163.5993
2546	860105.1	1614139	793.0882 X8 REW	165.8078
2548	860105.7	1614137	793.2804 X8	167.9122
2549	860106.2	1614135	793.8945 X8	169.7058
2550	860106.7	1614134	794.6103 X8	170.9028
2551	860106.8	1614133	795.9169 X8	172.1991
2552	860107.5	1614128	796.3061 X8	176.5166
2553	860108.3	1614126	796.9616 X8 BKF	178.7198
2554	860112.3	1614121	797.3251 X8	184.4023
2555	860115.3	1614116	797.799 X8 FP	190.2025
2556	860116.2	1614107	802.2728 X8	199.3233
2557	860117.8	1614099	806.2583 X8	207.8042
2558	860119.3	1614095	807.3481 X8 BM	212.0465

Bankfull Li	ne
Station	Elevation
140.36	796.65
177.67	796.65

Floodprone Line					
Station	Elevation				
115.33	801.49				
197.73	801.49				

	Stream			BKF	Max BKF					
Feature	Туре	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	Bc	106.3	37.17	2.86	3.7	12.99	2.3	2.2	796.93	801.64

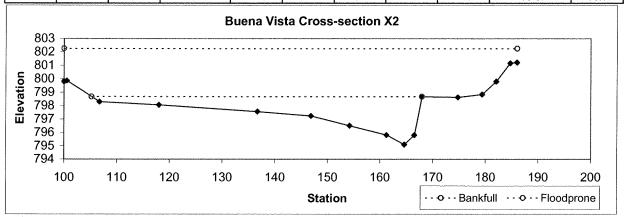


Pt#	North	East	Elevation Note	Station
2585	860351.1	1614155	804.6829 X9	100
2584	860348.5	1614166	802.0472 X9	110.6358
2583	860345.4	1614176	801.4353 X9 BM	121.8264
2582	860344.4	1614178	801.3098 X9 MT	123.6222
2581	860338.2	1614189	797.1949 X9 LT	135.8903
2580	860334.6	1614202	797.4265 X9	149.3276
2579	860333.4	1614205	796.9282 X9 BKF	152.8529
2578	860333.1	1614210	794.8501 X9	157.2439
2577	860332.4	1614211	793.874 X9 REV	V 159.055
2576	860332	1614213	793.6086 X9	161.2028
2575	860331.5	1614218	793.4794 X9	165.6514
2574	860330.6	1614222	793.2807 X9	169.5728
2573	860329.8	1614224	793.2346 X9 TW	171.928
2572	860329.3	1614226	793.3829 X9	174.0644
2571	860328.2	1614230	793.453 X9	177.97
2570	860327.9	1614232	793.3682 X9	180.1749
2569	860327.6	1614233	793.405 X9	180.9489
2568	860327.1	1614235	793.5145 X9	183.0989
2566	860326.7	1614236	794.0578 X9	184.2897
2565	860326.3	1614237	794.1108 X9 LEW	/ 185.2619
2564	860324.8	1614242	797.4337 X9 BKF	190.8543
2563	860323.9	1614246	798.2368 X9 LT	194.9285
2562	860322.3	1614252	798.3969 X9 LT	200.6405
2561	860320	1614259	800.9706 X9 HT	207.8992
2560	860319.4	1614260	801.0236 X9 BM	209.4568
2559	860316.7	1614271	801.6432 X9	220.3605

Bankfull Line					
Station	Elevation				
152.84	796.93				
190.01	796.93				

Floodprone	Line
Station	Elevation
125.66	800.63
206.93	800.63

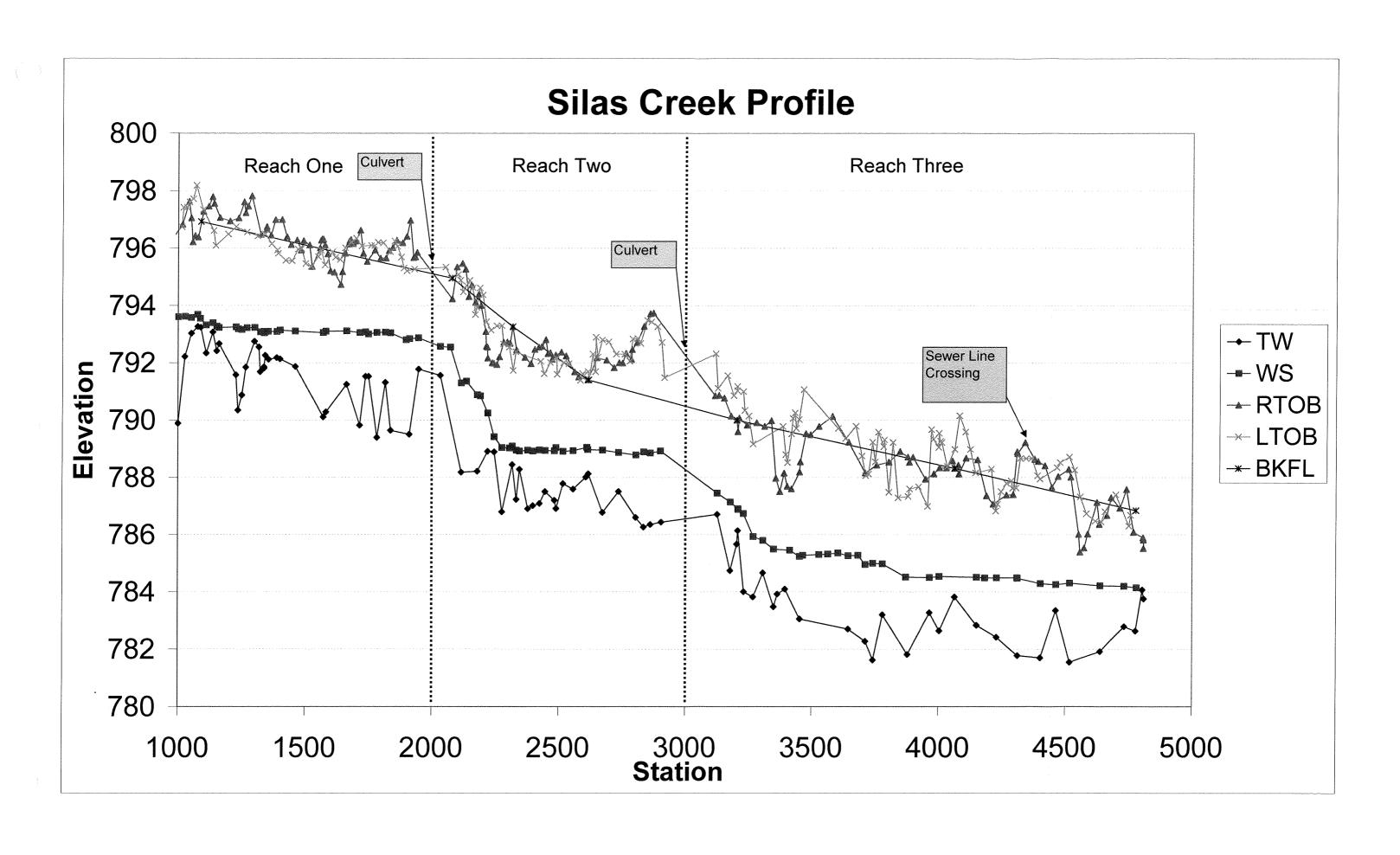
Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	Ë	24.9	16.64	1.5	2.29	11.09	1.7	5.3	796.26	797.94

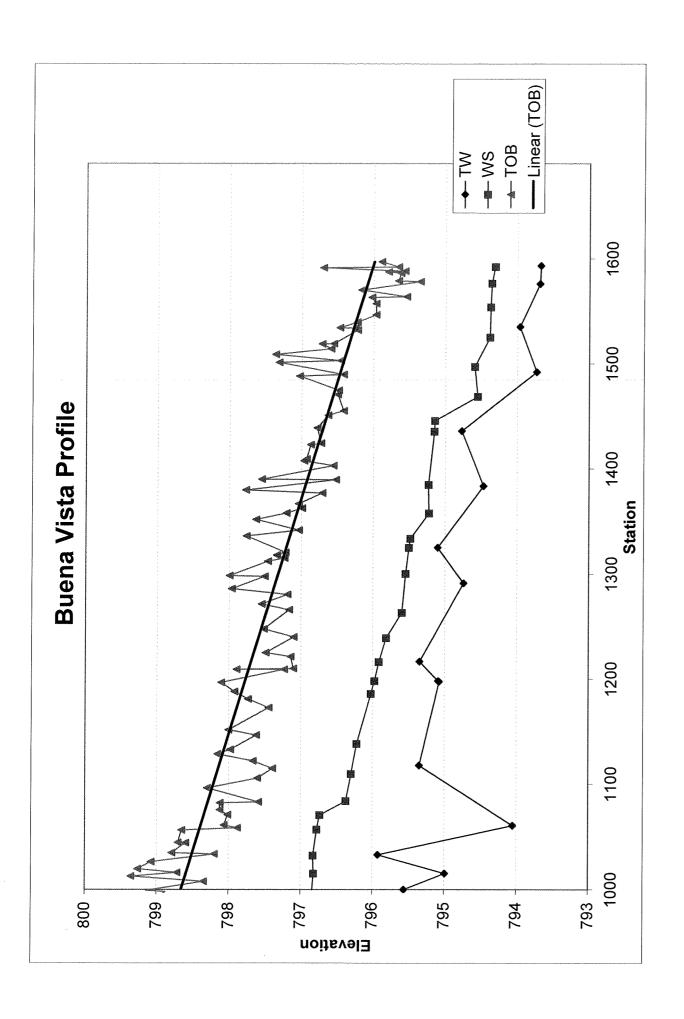


North	East	Elevation	Note	Station
858955.3	1614054	800.0408	X1 RMON	100
858955.2	1614054	800.0439	X1 RMON	100.0315
858954.3	1614053	800.0938	X1 TOP	101.2598
858948.2	1614049	798.109	X1	107.9073
858943	1614046	796.8527	X1 TOE	114.1899
858932.4	1614033	796.8023	X1	130.8487
858920.6	1614018	796.6974	X1	149.6997
858915.9	1614010	796.4719	X1 BKFL	158.9074
858914.8	1614006	794.9167	X1	162.1197
858912.4	1614004	794.1454	X1 RCHNL	165.3987
858910.6	1614002	793.9638	X1 TW	168.0628
858908.4	1614000	794.1718	X1 LCHNL	171.0254
858906.3	1613998	795.3593	X1	173.7823
858904.6	1613997	796.2554	X1 BKFL	175.991
858900.5	1613993	796.2625	X1	181.9967
858896.7	1613989	796.5307	X1 TOE	187.3854
858893.3	1613983	797.9437	X1 TOP	193.7251
858892.7	1613983	797.8788	X1 LMON I	194.4824
858892.6	1613983	797.908	X1 LMON	194.5282
	858955.3 858955.2 858954.3 858948.2 858943 858920.6 858915.9 858914.8 858912.4 858910.6 858908.4 858906.3 858908.5 858908.7 85890.5	858955.3 1614054 858955.2 1614054 858954.3 1614053 858948.2 1614049 858943 1614046 858932.4 1614013 858920.6 1614010 858915.9 1614010 858914.8 1614006 858912.4 1614006 858910.6 1614002 858908.4 1614000 858908.4 1614909 858904.6 1613998 858904.6 1613998 858904.7 1613983 858893.3 1613983 858892.7 1613983	858955.3 1614054 800.0408 858955.2 1614054 800.0439 858954.3 1614053 800.0938 858948.2 1614049 798.109 858943 1614046 796.8527 858932.4 1614033 796.8023 858912.6 1614018 796.6974 858915.9 1614010 794.4719 858914.8 1614006 794.9167 858912.4 1614004 793.9638 858908.4 1614002 793.9638 858908.4 1614000 794.1718 858908.5 1613998 795.3593 858904.6 1613997 796.2654 85890.5 1613993 796.2625 85893.3 1613983 797.9437 858892.7 1613983 797.8788	858955.3 1614054 800.0408 X1 RMON 858955.2 1614054 800.0439 X1 RMON 858954.3 1614053 800.0938 X1 TOP 858948.2 1614049 798.109 X1 858943 1614046 796.8527 X1 TOE 858932.4 1614033 796.8023 X1 858920.6 1614018 796.6974 X1 858915.9 1614010 796.4719 X1 BKFL 858914.8 1614006 794.9167 X1 858912.4 1614004 794.1454 X1 RCHNL 858910.6 1614002 793.9638 X1 TW 858908.4 1614000 794.1718 X1 LCHNL 858908.5 1613998 795.3593 X1 858904.6 1613997 796.2554 X1 BKFL 85890.5 1613993 796.2625 X1 85898.7 1613983 797.9437 X1 TOE 858893.3 1613983 797.9437 X1 TOP 858892.7 1613983 797.8788 X1 LMON I

Bankfull Lir	ie
Station	Elevation
159.35	796.26
175.99	796.26

Floodprone	Line
Station	Elevation
106.44	798.55
194.53	798.55

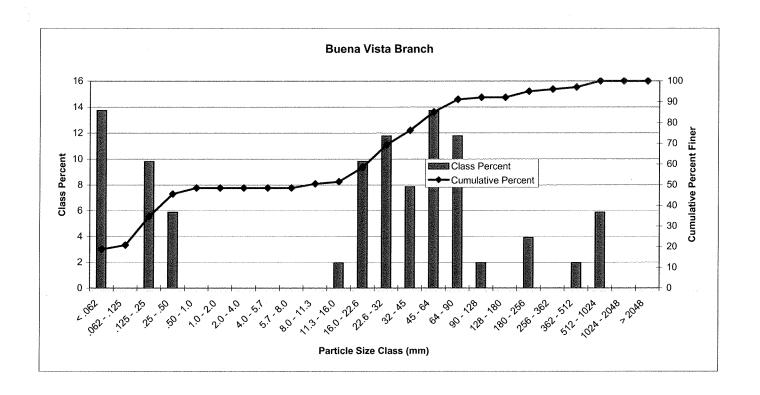

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth		BH Ratio	ER	BKF Elev	TOB Elev
Pool		85.2	62.72	1.36	3.58	46.17	1.3	1.4	798.67	799.87

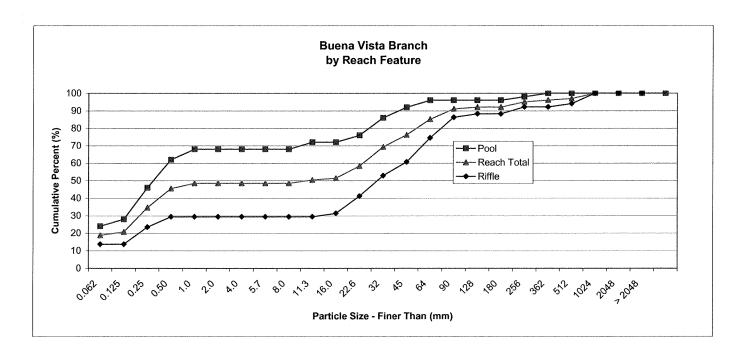

505-00-10070-0000					
Pt#	North	East	Elevation	Note	Station
1737	858875.9	1614262	799.7852	X2 LMON	100
1698	858875.9	1614262	799.8253	X2 LMON I	100:0066
1736	858876.5	1614262	799.8653	X2 TOP	100.5545
1735	858882.6	1614263	798.2859	X2TOE	106.7375
1734	858893.9	1614265	798.057	X2	118.0428
1733	858912.4	1614267	797.5546	X2	136.6903
1732	858922.5	1614268	797.2313	X2 BKFL	146.8559
1731	858929.9	1614269	796.5104	X2	154.2137
1730	858936.9	1614268	795.8121	X2 LCHNL	161.2217
1728	858940.3	1614268	795.0905	X2 TW	164.6086
1727	858942.3	1614267	795.7976	X2 RCHNL	166.5039
1726	858943.8	1614264	798.6746	X2 BKFL	167.9369
1725	858950.6	1614265	798.6285	X2	174.761
1724	858955.2	1614266	798.8468	X2 TOE	179.3815
1723	858957.9	1614267	799.8031	X2	182.0554
1722	858960.6	1614266	801.1658	X2 TOP	184.7115
1699	858961.8	1614266	801.2311	X2 RMON	185.9387
1721	858961.8	1614266	801.2102	X2 RMON	185.9694

Bankfull Line	
Station E	levation
105.22	798.67
167.94	798.67

Floodprone	Line
Station	Elevation
100	802.26
185.97	802.26

		rofile Survey Data										
Descriptor Station	TW Elevation	Descriptor WS Station Elevati	Descriptor on Station		Descriptor Station	RTOB Elevation	Descriptor Station		Descriptor Station	LTOB Elevation	BKFL	
1000	789.8883	1000.156 793.6	008 966.6205	796.7883	2510.494	792.3691	1014.26	796.7383		791.0287	1089.2 2079.11	796.93
1026.664 1052.418		1027.554 793.6 1052.054 793.5		796.3522 796.494		792.2405 791.6872		797.4277 797.4278		791.175 790.9961	2318.4	794.954 791.26
1077.396		1076.889 793.6	348 1016.614	796.8324		791.5077		797.6102		790.3411	2616.8	791.4
1089.237 1110.928		1087.483 793.5 1110.365 793.3		797.6357 797.0558		791.4064 792.179		797.7216 798.1885		790.1428 789.1718	3204.3 4063.5	790 788,32
1136,744	793.0711	1137.053 793.3	967 1057.305	796.2169	2688.195	792.0928	1097.752	797.3438	3385.774	789.7845		
1151.999 1161.242		1152,076 793.2 1161,166 793.	749 1066.63	796.4399 796.3861		791.8289 792.0039	1139.416 1147.684	796.6148		788.8002 788.5201		
1227.696	791.5782	1227.827 793.2	173 1099.216	797.2816	2751.137	791.9951	1196.457	796.4963	3420.052	789,5258		
1235.388		1236.96 793.1 1250.468 793.1		797.4626		792.3321 792.1169		796.7488 796.5662	3425.37 3434.361	790.0605 790.256		
1250.885 1266.213		1270.849 793.2		797.791 797.5621		792.1109	1312.674		3438.664			
1300.352		1301.357 793.		797.0696	2808.547	792.7071 793.2731		796,4935		790.0228 791.0665		
1317.822 1322.848		1324.135 793.0 1338.652 793.0		796.9467 797.0539		793.7199	1367.492 1390.66	795.9381		790.0593		
1337,965	791.8099	1338.91 793.0	951 1258.879	797,616	2872.845	793.7385		795.825		789.7172		
1338.206 1343.242		1342,283 793.0 1354,519 793.0		797.2357 797.4639		790.8507 790.8645		795.5769 795.5648		789.3623 789.7892		
1355.973	792.1221	1389.465 793.0	901 1289,402	797.8234	3154,427	790.7698	1471,616	795.966	3697.586	788.7489		
1388.226 1401.57	792.178 792.1349	1401.894 793.1- 1461.222 793.1		796.4802 796.6649		790.1428 790.0047		795.9923 795.467	3712.527 3723.04	788.0655 788.1217		
1461.758	791.87	1571.631 793.0	525 1348.535	796.7533	3208.342	789.5989	1522.973	795.3624	3739.408	789.2322		
1572.18 1582.585		1581.968 793.10 1663.821 793.10		796.4537 796.997		790.0794 789.8259	1551.198 1562.919	795.7081 795.9258	3749.951 3762.237			
1663.496	791.2446	1716.13 793.0	519 1409.05	797.0021	3281.936	789.9137	1577.903	795.4157	3783.285	789.0799		
1715.494 1738.564		1738,731 793.0 1750.123 793.0		796.4008 796.1257		789.7879 789.9794	1607.275	795.8724 795.6813	3786.244 3803.829			
1750.795		1783.47 793.0		796.2885	3358,494	787.977	1637.632		3819.602			
1783.545 1816.942		1817.185 793.00 1837.341 793.00		795.9329 796.2641		787.5068 788.1533	1657.932 1680.699		3840.16 3879.551	787.2904		
1837.872		1898.354 792.0		796.2041		787,6988	1700.751	796.3506	3885.902			
1911.609		1912.113 792.83	93 1526.998	795.3599	3420.187	787.6043	1722.828		3921,408			
1947.742 2033.076		1946.803 792.80 2033.078 792.50		796.0155 796.2804	3452.348	788.1944 788.5455	1760.103 1773.325		3971.246	786.9923 789.6721		
2115.834	788.1845	2072.675 792.54	161 1567,156	796.3263	3476.593	789.5304	1786.826	796.2045	3979.394	789.3333		
2179.222 2220.078		2116,016 791,29 2135,958 791,39		796.3166 796.1099	3494.525 3527.775	789.4918 789.7819	1807.954 1836.293		3999.677 4001.216			
2245.514	788.8951	2179.214 790.88	1589.004	795.8032	3580.779	790.1349	1852,197	796.2526	4006.578	789.261		
2276.302 2316.517		2191.224 790.84 2220.35 790.24		795.2117 795.1617	3645.274 3710.712	789.23 788.1604	1863.197 1878.606		4012.35 4033.703	789.2232 788.3833		
2332.862	787.2328	2245.659 789.4	91 1640.755	794.7305	3755.841	788.4336	1888.951	795.3137	4063.102	788.9809		
2345.664 2378.583		2276.49 789.04 2306.496 789.02		795.1776 795.8227	3803.833	788.537 788.9089	1901.015 1930.562		4081.724 4105.544			
2398.358		2316.921 789.0	93 1670.128	796.1443	3878.415	788.7147	2053.171	795.3398	4124.265	788.9804		
2424.466		2332.864 788.95		796.2559	3884.438	788.5345 788.7128	2074.214 2103.143		4144.211 4205.709			
2446.648 2483.659	787.2022	2345.525 788.92 2378.158 788.95		796.3074 796.1636	3948.383	787.9426	2112.231		4223.972			
2489.897	786.9155	2398.27 788.92	1698.632	796.2499	3981.44	788.1253	2122.388		4231.224			
2517.142 2557.293		2424.288 788.96 2446.512 788.9		796.6306 795.8192	4003.771 4030.021	788.3386 788.3356	2135.385 2148.474		4244.768 4266.603			
2607.574	788.0132	2483.411 788.93	1743.891	795.5392	4054.43	788.5823	2160.393	794.6186	4284.714	787.8823		
2616.798 2672.709		2489.762 789.04 2517.227 788.91		795.9326 795.6527		788.3179 788.4313	2170.267 2176.663		4290.421 4304.507			
2736.005	787.5141	2557.085 788.93	66 1818.758	795.6526	4079.13	788.1221	2189.094	794.6173	4320.841	788.6654		
2803.938 2835.288		2610.6 789.05 2614.353 788.97		795.9145 796.0211		788.6757 788.6183		794.3681 793.4266	4343.097 4365.072			
2861.977	786.359	2672.682 788.95	62 1860.571	796.2812	4186.664	787.3588	2232.767	793.1385	4388.282	788.0639		
2904.749 3127.087		2735.919 788.87 2804.567 788.79		796.1926 796.414	4212.994 4266.369	787.0701 787.3854	2254.949 2275.071		4397.628 4465.908			
3178.442	784.7424	2835.733 788.89	29 1914.075	796.9705	4293.019	787.4023	2281.46	792.6513	4478.126	788.5212		
3204.275 3208.352		2861.623 788.8 2901.137 788.92		795.672 795.6949	4308.668 4310.727	788.8992 788.8375	2304.016 2319.868		4515.152 4536.305			
3232.333	784.0005	3127.323 787.45	47 1940.818	795.8534	4340.323	789.2168	2330.662	792.3808	4559.512	787.325		
3269.038 3307.559		3178.727 787.14 3209.155 786.91		794.2277 795.3434		788.6349 788.5624	2428.318 2442.215		4583.042 4617.374			
3349.986	783.4744	3210.233 786.88	58 2119.84	795.4693	4417.391	788.409	2466.361	792.0097	4641.231	786,4471		
3364.916 3394.972		3230.572 786.73 3269.283 785.93		795.2687		787.6594 788.0417	2491.814 2493.487		4655.714 4698.828			
3453.08	783.0495	3307.454 785.79	81 2156.432	794.7277	4512.362	788.2874	2519,541	792,0074	4750.361	786.3		
3644.091 3711.483		3349.921 785.49 3413.945 785.45			4521.373 4553.168	788.0169 786.0131	2539.743 2585.534		4756.639	786.6835		
3741.521		3452.929 785.23	73 2193.015	793.9982	4558,839	785.3904	2593.608	791.6237				
3779.994 3878.206		3465.067 785.2 3528.958 785.30		793.0924	4574.622 4588 777	785.5322 786.0219	2614.682 2619.332					
3964.726	783.2706	3564.112 785.32	03 2218.199	792.5427	4623.51	787.1323	2633.958	792.302				
4003,29 4063,475		3603.571 785.3 3644.256 785.26		792.1654 791.9996		786.359 786.672	2644.228 2646.013					
4149.149		3682.708 785.27	56 2243.339		4680.745	787.2936	2653.862	792.2028				
4227.792 4311.45		3711.4 784.9 3741.068 784.99		791.9373 792.2085	4715.163 4740.725		2671.174 2695.963					
4399.83		3779.556 784.97			4768.667		2725.389	792.3023				
4461.71		3871.264 784.51				786.8408	2759.398					
4517.282 4636.584		3965.016 784.49 4002.761 784.54				785.8957 785.8146	2779.917 2791.918					
4732.183	782.7812	4149,273 784,50	83 2333.233	792.4474	4807.694	785.5184	2810.856					
4777.054 4802.925		4181.055 784.4 4227.737 784.48	95 2390.305				2822.959 2849.719					
4808.502		4309.023 784.49	22 2405.046	792.4682			2865.362					
		4310.839 784.47 4400.41 784.28					2889.128 2906.424					
		4461.988 784.25	57 2448.467	792.8058			2916.365	791.4845				
		4517.293 784.30 4636.588 784.20					3120.921 3129.217					
		4731.51 784.19	59 2473.9	792.1255			3167,374	791.5501				
		4780.174 784.14	21 2487.742	192.2123			3191.748	190.0044				

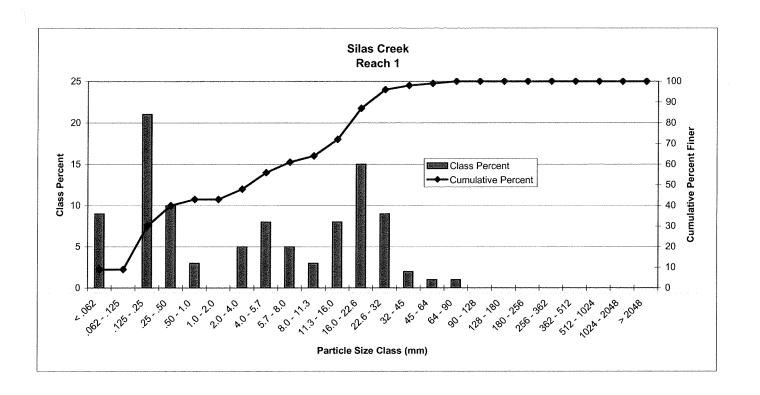

Buena Vista Longitudinal Profile Survey Data

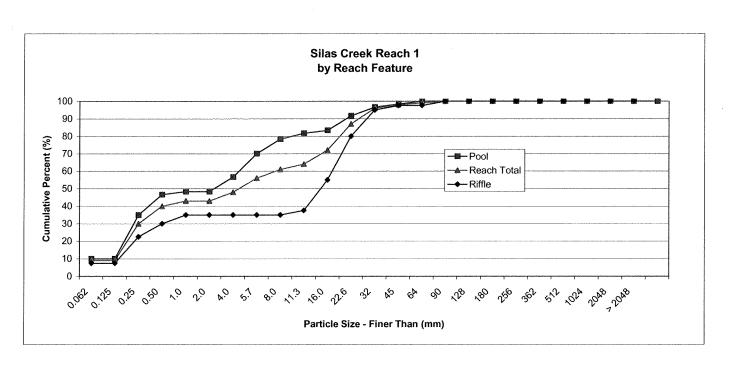

Buena Vista Longitudin	al Profile Survey Data		
Descriptor TW	Descriptor = WS	Descriptor = TOB	Descriptor TOB (Cont.
Station Elevation	Station Elevation	Station Elevation	Station Elevation
100 795.5602	99.7111 796.8337	90.3041 799.0554	441.79 797.0319
115.204 794.9911	115.0009 796.8159	98.0853 798.8732	451.8769 797.6297
132.808 795.9222	132.0769 796.8227	99.2902 799.1406	458.0679 797.206
160.503 794.0469	156.7692 796.771	107.7903 798.3462	462.558 796.9908
217.405 795.3493	170.4425 796.7306	112.6946 799.3569	466.8404 797.0365
297.383 795.0743	183.6451 796.3678	116.1233 798.7134	477.0225 796.709
297.991 795.0905	209.4187 796.2944	119.5905 799.2633	479.8915 797.7722
316.472 795.3481	238.0119 796.2169	126.2972 799.0761	489.6984 796.5194
391.179 794.7405	285.5812 796.0242	133.5513 798.2007	490.1743 797.5512
425.176 795.1019	297.8415 795.9739	134.8498 798.7877	503.056 796.5547
483.551 794.4655	315.9873 795.9144	144.1999 798.5955	507.6761 796.9639
535.895 794.7722	338.8743 795.8131	144.6153 798.7013	509.2234 796.93
591.979 793.7316	363.1067 795.5955	156.251 798.6532	523.0004 796.8724
635.115 793.9638	400.2471 795.5462	158.4254 797.8793	524.2793 796.729
676.083 793.6883	424.9656 795.5016	160.9528 798.0634	538.9177 796.7796
693.199 793.6764	433.7121 795.4821	170.7662 798.0133	551.0018 796.6318
	457.6303 795.2255	175.4927 798.1248	555.2808 796.4155
	484.7561 795.2319	182.0664 798.1224	570.6237 796.4985
	535.4812 795.1518	182.9005 797.5843	574.6422 796.4839
	545.6537 795.1455	196.1426 798.2975	588.2136 797.0277
	568.6727 794.5508	205.3837 798.9999	589.7334 796.4179
	597.0367 794.5938	205.4233 797.6003	601.2715 797.3161
	625.047 794.3803	214.4827 798.9374	602.9326 796.4575
	653.8532 794.3719	214.7293 797.3908	608.8715 797.3641
	676.5451 794.3567	221.929 797.664	614.257 796.5938
	692.1093 794.3108	228.3913 798.1561	618.9718 796.7181
		232.6286 797.9764	619.1607 796.5568
		246.3023 797.618 251.4604 798.0043	632.0307 796.2244 633.9013 796.2554
		272.5557 797.4444	634.3057 796.4719
		280.725 797.7316	639.6837 796.2272
		283.2359 797.0114	646.7288 795.9689
		287.8966 797.922	657.321 795.9704
		296.0812 798.6746	663.2627 796.0287
		296.5503 798.1064	663.8352 795.5439
		309.0735 797.2313	670.209 796.169
		309.0883 797.8928	678.1055 795.3544
		309.7803 797.1044	678.9475 795.6587
		321.1866 797.1419	686.1802 795.6235
		324.9714 797.4898	687.4228 795.7991
		339.8831 797.0983	688.2536 795.5689
		347.7223 797.5154	691.3717 796.7032
		365.9355 797.163	692.193 795.6565
		371.3819 797.5482	697.0636 795.8924
		380.5451 797.1878	
		386.0894 797.9646	
		397.8003 797.5061	
		398.5857 797.9955	
		412.1623 797.4632	
		415.2571 797.231	
		417.9493 797.3407	
		420.526 797.2172	
		436.3219 797.7609	

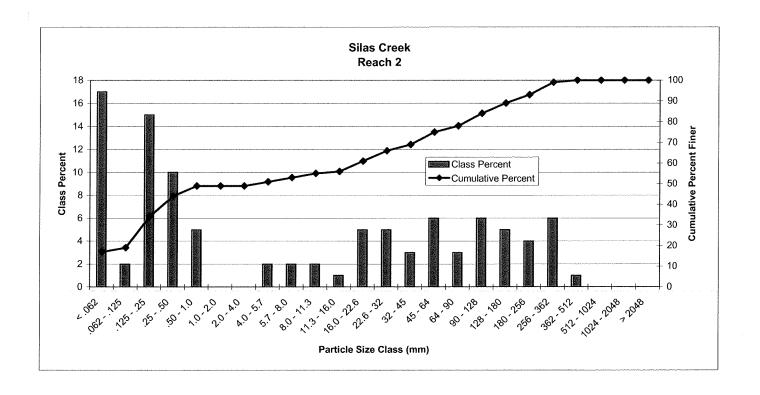
SITE OR PROJECT:	SILAS CREEK	
REACH/LOCATION:	BUENA VISTA BRANCH	
DATE COLLECTED:	7/30/2003	
FIELD COLLECTION BY:	JBP	
DATA ENTRY BY:	SEG	

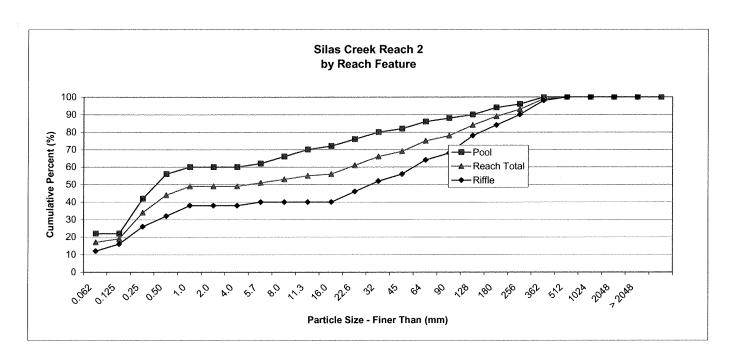
			PARTICL	E CLASS W	EIGHT (g)	g) Reach Summary		
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Pool	Total	Class %	% Cum	
SILT/CLAY	Silt / Clay	< .062	7.0	12.0	19.00	18.81	18.81	
	Very Fine	.062125		2.0	2.00	1.98	20.79	
	Fine	.12525	5.0	9.0	14.00	13.86	34.65	
	Medium	.2550	3.0	8.0	11.00	10.89	45.54	
00000000 00000000000000000000000000000	Coarse	.50 - 1.0		3.0	3.00	2.97	48.51	
	Very Coarse	1.0 - 2.0					48.51	
NEERS!	Very Fine	2.0 - 4.0	1				48.51	
	Fine	4.0 - 5.7					48.51	
R	Fine	5.7 - 8.0	·				48.51	
	Medium	8.0 - 11.3		2.0	2.00	1.98	50.50	
MHE DO	Medium	11.3 - 16.0	1.0		1.00	0.99	51.49	
000 L 1000	Coarse	16.0 - 22.6	5.0	2.0	7.00	6.93	58.42	
004 R	Coarse	22.6 - 32	6.0	5.0	11.00	10.89	69.31	
	Very Coarse	32 - 45	4.0	3.0	7.00	6.93	76.24	
000000	Very Coarse	45 - 64	7.0	2.0	9.00	8.91	85.15	
0099	Small	64 - 90	6.0		6.00	5.94	91.09	
COBBLE	Small	90 - 128	1.0		1.00	0.99	92.08	
COBBLE	Large	128 - 180					92.08	
000	Large	180 - 256	2.0	1.0	3.00	2.97	95.05	
20	Small	256 - 362	1 1 1 1 1	1.0	1.00	0.99	96.04	
	Small	362 - 512	1.0		1.00	0.99	97.03	
BOULDER	Medium	512 - 1024	3.0	×	3.00	2.97	100.00	
	Large-Very Large	1024 - 2048					100.00	
BEDROCK	Bedrock	> 2048					100.00	
		Totals:	51.0	50.0	101.00	100	100	

Channel materials						
D ₁₆ =	<0.062mm					
D ₃₅ =	0.26mm					
D ₅₀ =	10.48mm					
D ₈₄ =	61.55mm					
D ₉₅ =	254.73mm					



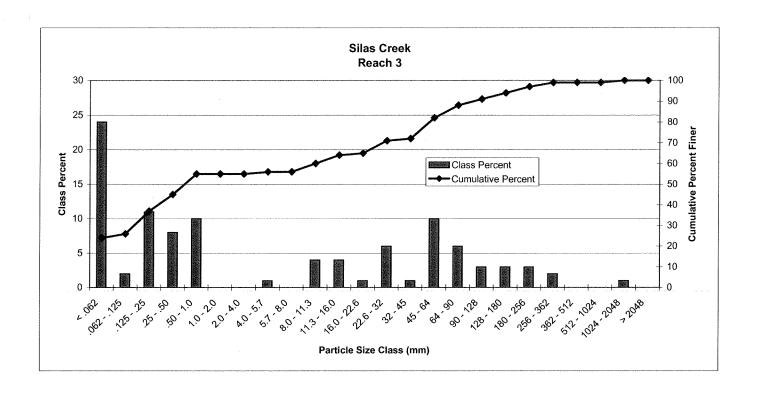


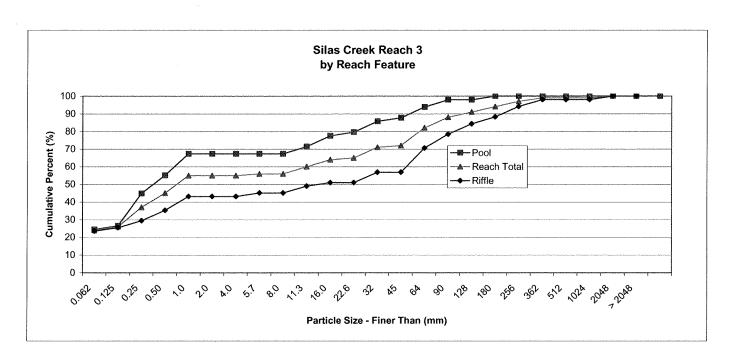

SITE OR PROJECT:	SILAS CREEK
REACH/LOCATION:	REACH 1
DATE COLLECTED:	2/9/2004
FIELD COLLECTION BY:	JBP
DATA ENTRY BY:	EEG


			PARTICL	E CLASS W	EIGHT (g)	Reach Summary		
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Pool	Total	Class %	% Cum	
SILT/CLAY	Silt / Clay	< .062	3	6	9.00	9.00	9.00	
\$0\$2\$0\$2\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0 \$2\$0\$0\$0\$0\$	Very Fine	.062125					9.00	
	Fine	.12525	6	15	21.00	21.00	30.00	
	Medium	.2550	3	7	10.00	10.00	40.00	
	Coarse	.50 - 1.0	2	1	3.00	3.00	43.00	
649464669696969696969696969696969696969	Very Coarse	1.0 - 2.0					43.00	
	Very Fine	2.0 - 4.0		5	5.00	5.00	48.00	
2000 2000 2000	Fine	4.0 - 5.7		8	8.00	8.00	56.00	
R	Fine	5.7 - 8.0		5	5.00	5.00	61.00	
	Medium	8.0 - 11.3	1. 1.	2	3.00	3.00	64.00	
// E DO	Medium	11.3 - 16.0	7	1	8.00	8.00	72.00	
	Coarse	16.0 - 22.6	10	5	15.00	15.00	87.00	
001 Po	Coarse	22.6 - 32	6	3	9.00	9.00	96.00	
00000	Very Coarse	32 - 45	1	1	2.00	2.00	98.00	
00000000000000000000000000000000000000	Very Coarse	45 - 64		1	1.00	1.00	99.00	
DD QC	Small	64 - 90	1		1.00	1.00	100.00	
OODDI E	Small	90 - 128		٠.			100.00	
COBBLE	Large	128 - 180					100.00	
000	Large	180 - 256					100.00	
20-	Small	256 - 362					100.00	
	Small	362 - 512					100.00	
BOULDER	Medium	512 - 1024					100.00	
	Large-Very Large	1024 - 2048					100.00	
BEDROCK E	Bedrock	> 2048					100.00	
	· · · · · · · · · · · · · · · · · · ·	Totals:	40.0	60.0	100.00	100	100	

Channel materials					
D ₁₆ =	0.17mm				
D ₃₅ =	0.38mm				
D ₅₀ =	4.43mm				
D ₈₄ =	21.28mm				
D ₉₅ =	30.96mm				

SITE OR PROJECT:	SILAS CREEK	
REACH/LOCATION:	Reach 2	
DATE COLLECTED:	8/8/2003	
FIELD COLLECTION BY:	JBP	-
DATA ENTRY BY:	SEG	


			PARTICLI	E CLASS W	EIGHT (g)	Reach Summary		
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Pool	Total	Class %	% Cum	
SILT/CLAY	Silt / Clay	< .062	6.0	11.0	17.00	17.00	17.00	
CACACACACACACACACACACACACACACACACACACA	Very Fine	.062125	2.0		2.00	2.00	19.00	
	Fine	.12525	5.0	10.0	15.00	15.00	34.00	
\$250,000,000 \$250,000 \$2	Medium	.2550	3.0	7.0	10.00	10.00	44.00	
40000000000000000000000000000000000000	Coarse	.50 - 1.0	3.0	2.0	5.00	5.00	49.00	
	Very Coarse	1.0 - 2.0					49.00	
1.42E88	Very Fine	2.0 - 4.0					49.00	
	Fine	4.0 - 5.7	1.0	1.0	2.00	2.00	51.00	
PYR SS	Fine	5.7 - 8.0		2.0	2.00	2.00	53.00	
	Medium	8.0 - 11.3		2.0	2.00	2.00	55.00	
MHE DO	Medium	11.3 - 16.0		1.0	1.00	1.00	56.00	
	Coarse	16.0 - 22.6	3.0	2.0	5.00	5.00	61.00	
	Coarse	22.6 - 32	3.0	2.0	5.00	5.00	66.00	
000000	Very Coarse	32 - 45	2.0	1.0	3.00	3.00	69.00	
0000000	Very Coarse	45 - 64	4.0	2.0	6.00	6.00	75.00	
000	Small	64 - 90	2.0	1.0	3.00	3.00	78.00	
	Small	90 - 128	5.0	1.0	6.00	6.00	84.00	
COBBLE	Large	128 - 180	3.0	2.0	5.00	5.00	89.00	
000	Large	180 - 256	3.0	1.0	4.00	4.00	93.00	
20-	Small	256 - 362	4.0	2.0	6.00	6.00	99.00	
	Small	362 - 512	1.0		1.00	1.00	100.00	
BOULDER	Medium	512 - 1024					100.00	
	Large-Very Large	1024 - 2048					100.00	
BEDROCK	Bedrock	> 2048					100.00	
		Totals:	50.0	50.0	100.00	100	100	


Channel materials					
D ₁₆ =	<0.062				
D ₃₅ =	0.28mm				
D ₅₀ =	4.85mm				
D ₈₄ =	128.00mm				
D ₉₅ =	291.33mm				

SITE OR PROJECT:	Silas Creek	
REACH/LOCATION:	Reach 3	
DATE COLLECTED:	7/29/2003	
FIELD COLLECTION BY:	JBP	
DATA ENTRY BY:	SEG	

			PARTICL	PARTICLE CLASS WEIGHT (g)			Reach Summary	
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Pool	Total	Class %	% Cum	
SILT/CLAY	Silt / Clay	< .062	12.0	12.0	24.00	24.00	24.00	
-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	Very Fine	.062125	1.0	1.0	2.00	2.00	26.00	
	Fine	.12525	2.0	9.0	11.00	11.00	37.00	
	Medium	.2550	3.0	5.0	8.00	8.00	45.00	
	Coarse	.50 - 1.0	4.0	6.0	10.00	10.00	55.00	
	Very Coarse	1.0 - 2.0					55.00	
1000 M	Very Fine	2.0 - 4.0					55.00	
	Fine	4.0 - 5.7	1.0		1.00	1.00	56.00	
R	Fine	5.7 - 8.0					56.00	
	Medium	8.0 - 11.3	2.0	2.0	4.00	4.00	60.00	
16 E DO	Medium	11.3 - 16.0	1.0	3.0	4.00	4.00	64.00	
	Coarse	16.0 - 22.6		1.0	1.00	1.00	65.00	
00120	Coarse	22.6 - 32	3.0	3.0	6.00	6.00	71.00	
660000	Very Coarse	32 - 45		1.0	1.00	1.00	72.00	
	Very Coarse	45 - 64	7.0	3.0	10.00	10.00	82.00	
0009	Small	64 - 90	4.0	2.0	6.00	6.00	88.00	
COBBLE	Small	90 - 128	3.0		3.00	3.00	91.00	
COBBLE	Large	128 - 180	2.0	1.0	3.00	3.00	94.00	
700	Large	180 - 256	3.0	-11-11-11-11-11	3.00	3.00	97.00	
20-	Small	256 - 362	2.0		2.00	2.00	99.00	
(DOULDED)	Small	362 - 512					99.00	
BOULDER	Medium	512 - 1024					99.00	
	Large-Very Large	1024 - 2048	1.0		1.00	1.00	100.00	
BEDROCK	Bedrock	> 2048					100.00	
		Totals:	51.0	49.0	100.00	100	100	

Channel materials					
D ₁₆ =	<0.062mm				
D ₃₅ =	0.23mm				
D ₅₀ =	0.75mm				
D ₈₄ =	72.67mm				
$D_{95} =$	205.33mm				

Silas Creek Photo Log

Silas Creek

Reach 1 – Photos 67-90 (Long 23-28, X1-X3)

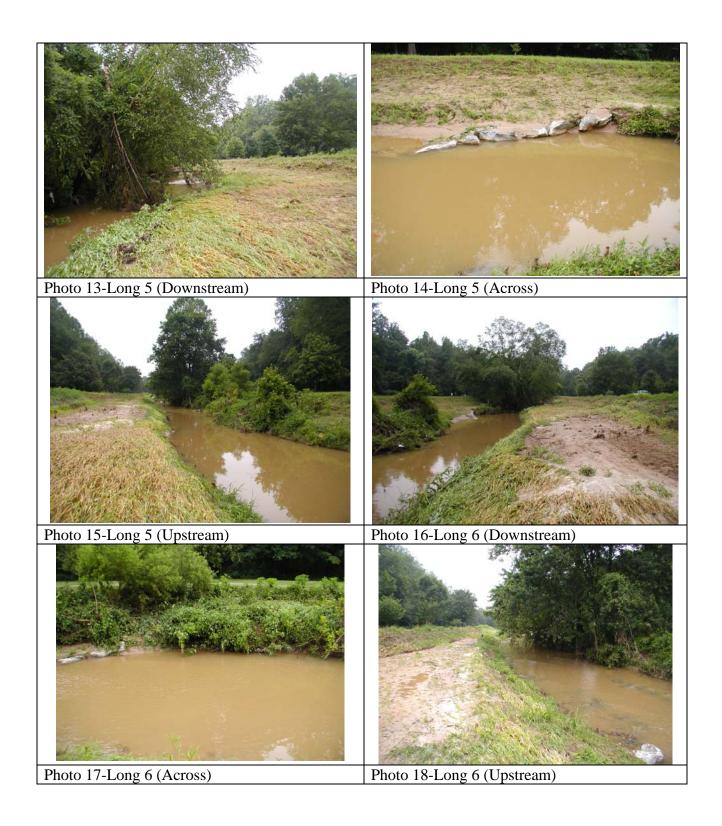
Reach 2 – Photos 40-66, 91-96 (Long 14-22, X4-X6)

Reach 3 – Photos 1-39, 97-102 (Long 1-13, X7-X9)

Vegetation Plot 1- Photo 113

Buena Vista Branch

BVB – **Photos 103-112 (BVB Long 1-6, BVB X1-X2)**


Vegetation Plot BV- Photo 114

Notes:

- 1. Photo point locations are shown on the plan views in the actual location the picture was taken.
- 2. All points are marked with a wooden stake and orange flagging tape. For channel points, the stake is set up on the most accessible bank at that same station.
- 3. Photo locations include longitudinal photos, cross sections, and vegetation plots.

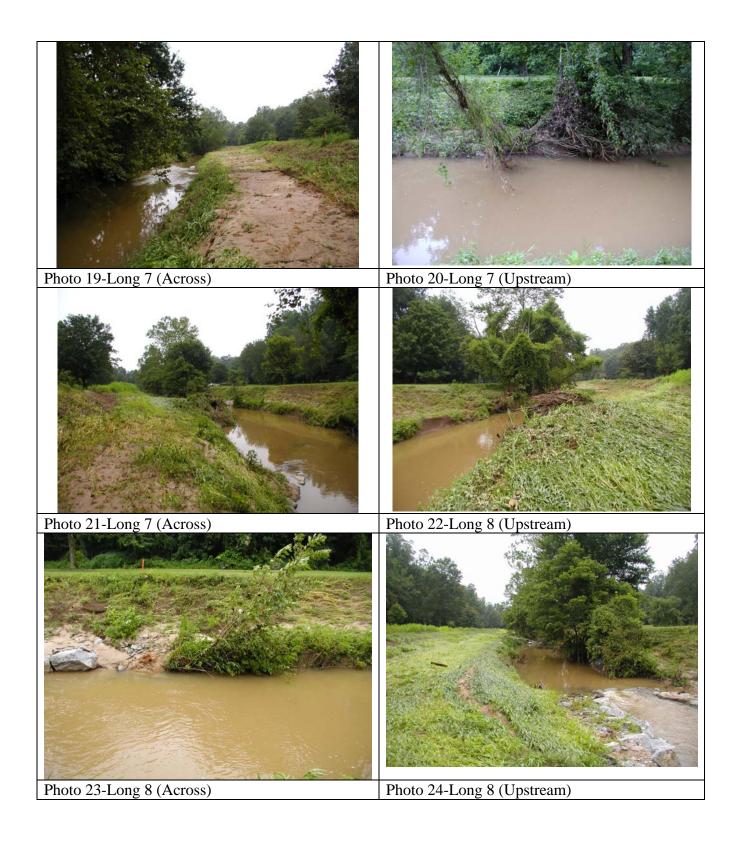
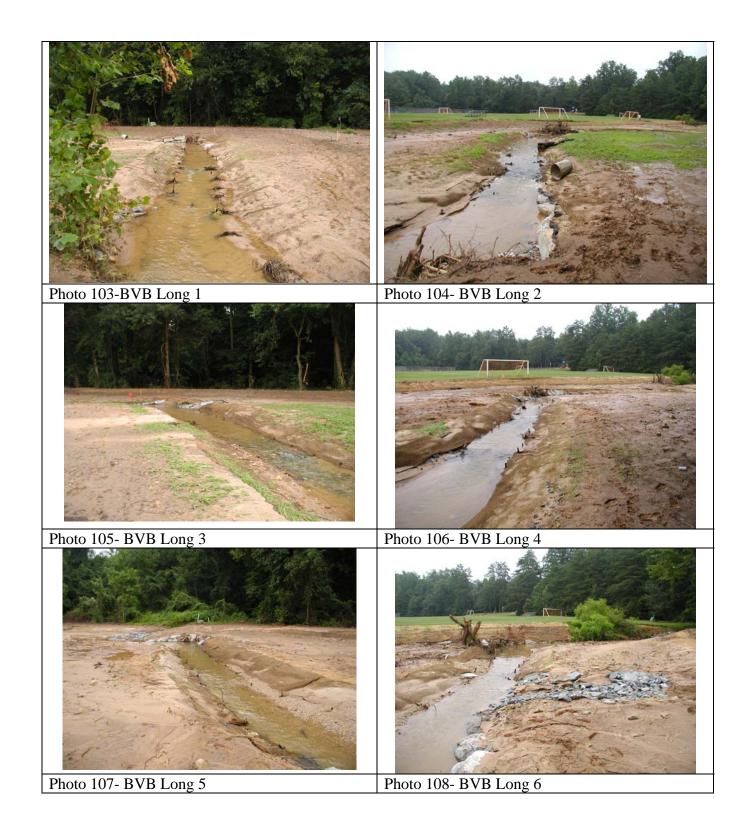


Photo 65-Long 22 (Across)

Photo 66-Long 22 (Upstream)

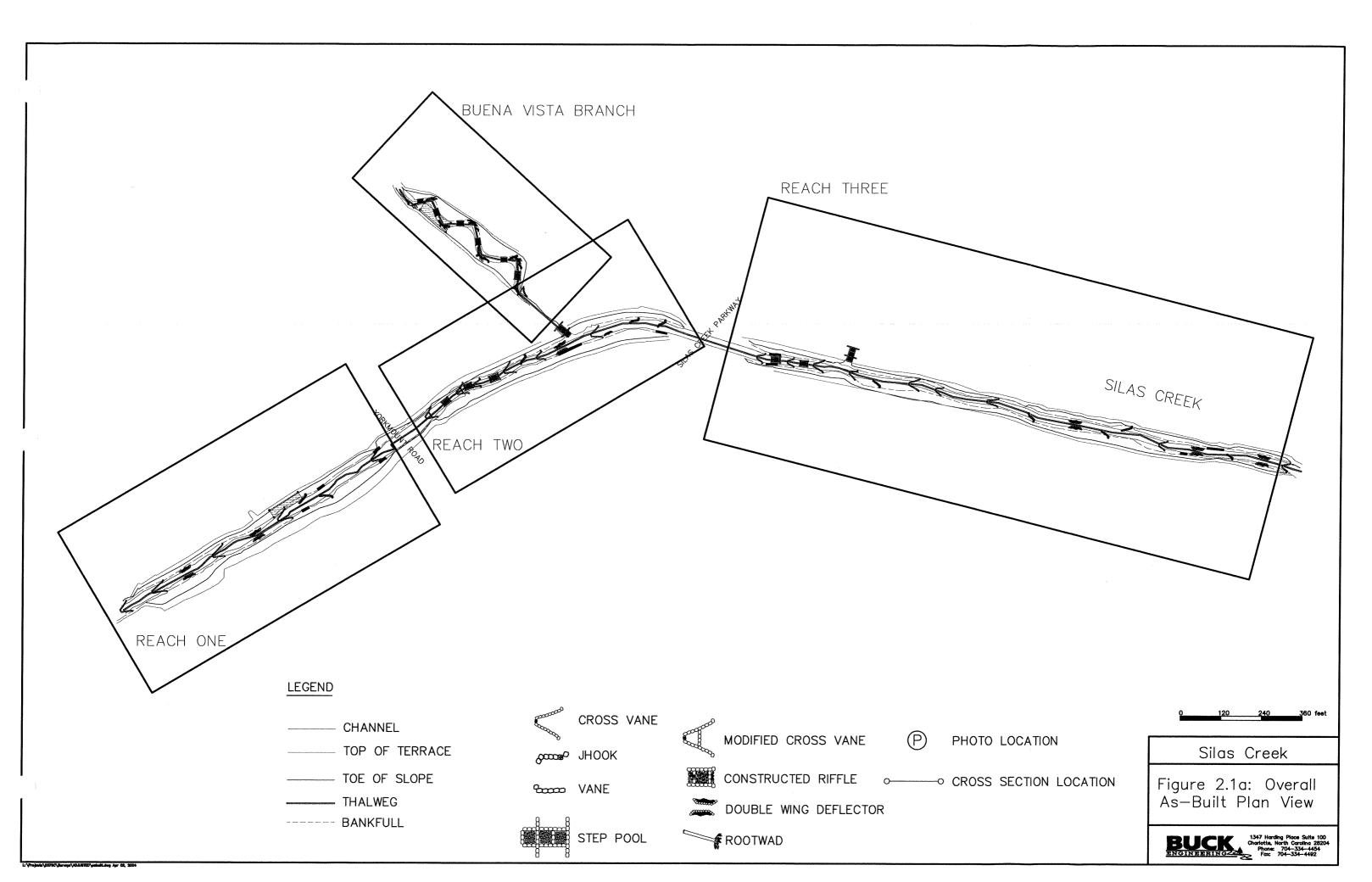


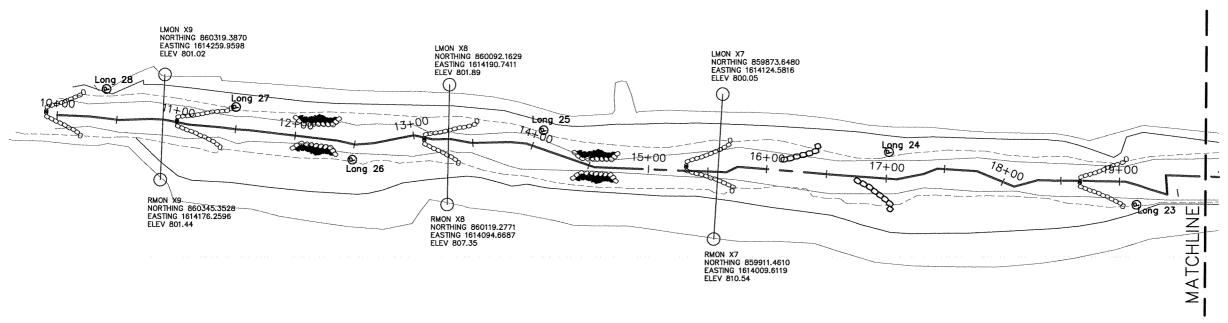
Silas Creek Vegetation Survival Plots

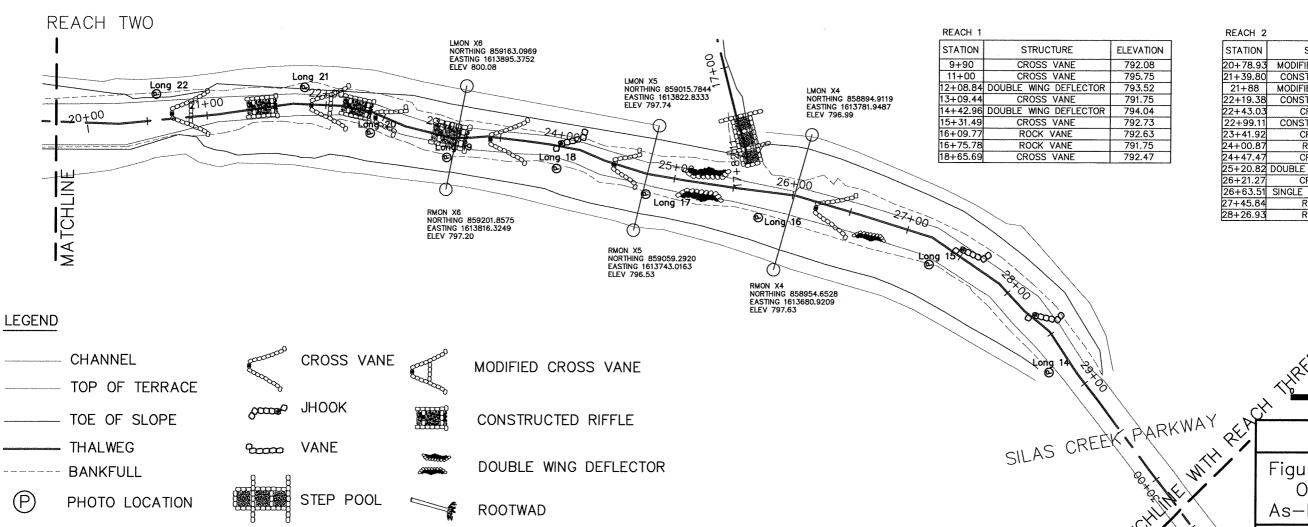
Live Stakes

Plot	Photo Point (#)		Year 1 (stakes)		Year 5 (stakes)
1		71		 	
BV		45			

Bare Root Plantings


Plot	Photo Point (#)	Planted (Total Stems)	Year 1 (stems)	Year 3 (stems)	Year 5 (stems)
1		37			
BV		30			


Bare Root Plantings By Species


	Planted	Year 1	Year 2	Year 3	Year 4	Year 5
Plot 1	(stems)	(stems)	(stems)	(stems)	(stems)	(stems)
Sycamore	3					
Ironwood	7					
Spicebush	3					
Willow Oak	4					
River Birch	5					
PawPaw	2					
Shagbark Hickory	6					
Southern Sugar Maple	3					
Red Chokeberry	4					
Plot BV						
Sycamore	5					
Ironwood	4					
Spicebush	2		:			
Willow Oak	2					
River Birch	3					
PawPaw	2					
Shagbark Hickory	3					
Southern Sugar Maple	4			***************************************	· · · · · · · · · · · · · · · · · · ·	
Red Chokeberry	5					

Notes:

- 1. All plots are shown on the plan views. All plot corners are marked with wooden stakes with orange flagging tape.
- 3. Photo point locations are shown on the plan views and marked with wooden stakes with orange flagging tape.
- 4. Use successive columns for survivability from year to year.

DOUBLE WING DEFLECTOR

ROOTWAD

REACH 2

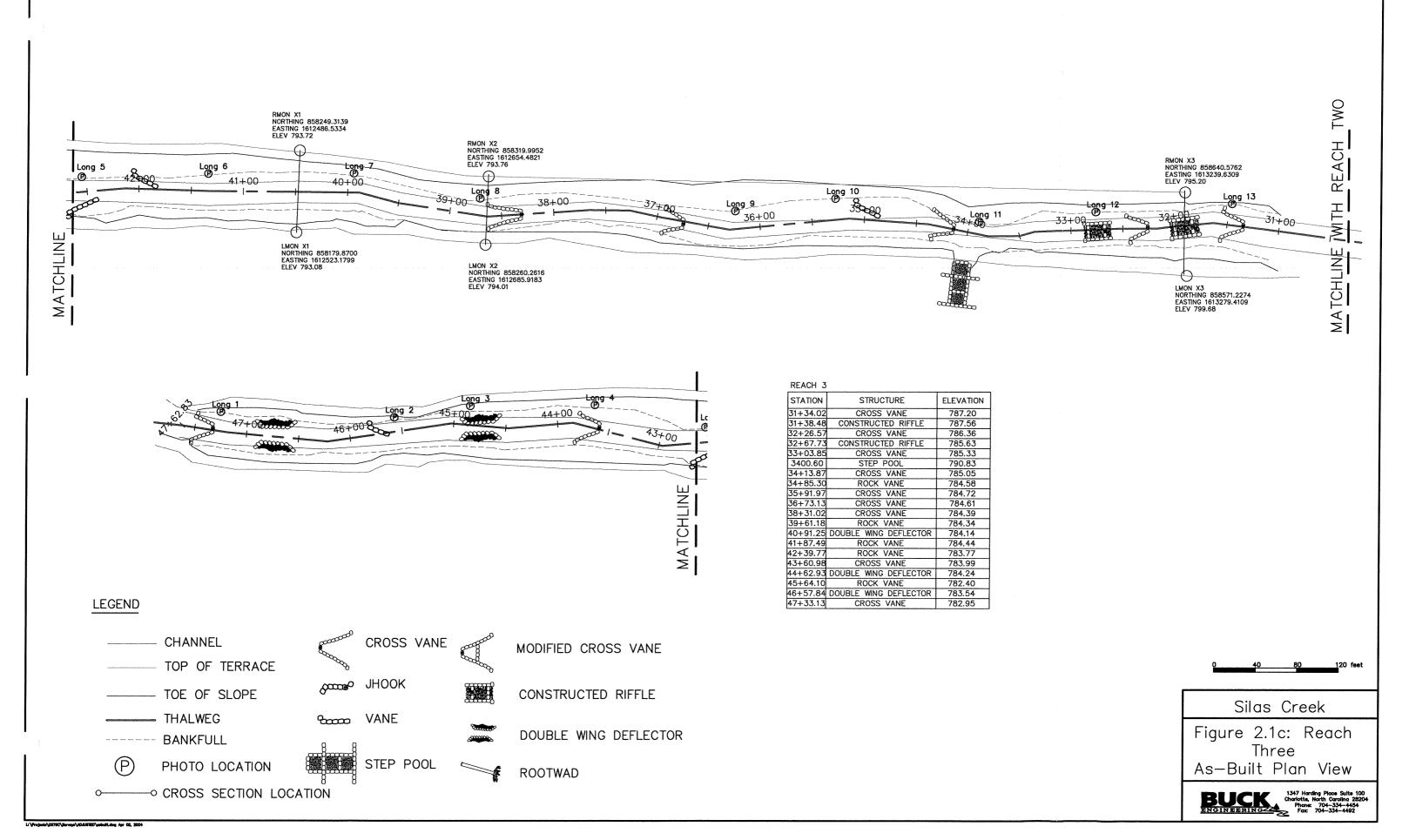
STATION	STRUCTURE	ELEVATION
20+78.93	MODIFIED CROSS VANE	792.15
21+39.80	CONSTRUCTED RIFFLE	791.13
21+88	MODIFIED CROSS VANE	790.45
22+19.38	CONSTRUCTED RIFFLE	790.07
22+43.03	CROSS VANE	789.09
22+99.11		787.94
23+41.92	CROSS VANE	788.31
24+00.87	ROCK VANE	788.15
24+47.47	CROSS VANE	788.14
25+20.82	DOUBLE WING DEFLECTOR	788.54
26+21.27	CROSS VANE	788.32
26+63.51	SINGLE WING DEFLECTOR	789.03
7+45.84	ROCK VANE	788.61
8+26.93	ROCK VANE	787.07

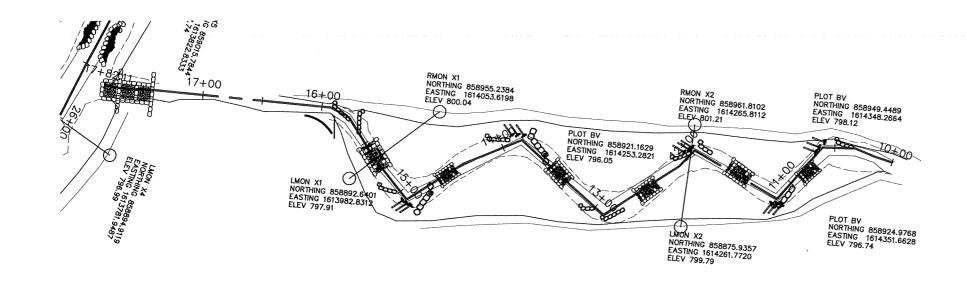
Silas Creek

Figure 2.1b: Reach One And Two As-Built Plan View

- CROSS SECTION LOCATION

PHOTO LOCATION


VANE


STEP POOL

ത്ത

THALWEG

BANKFULL

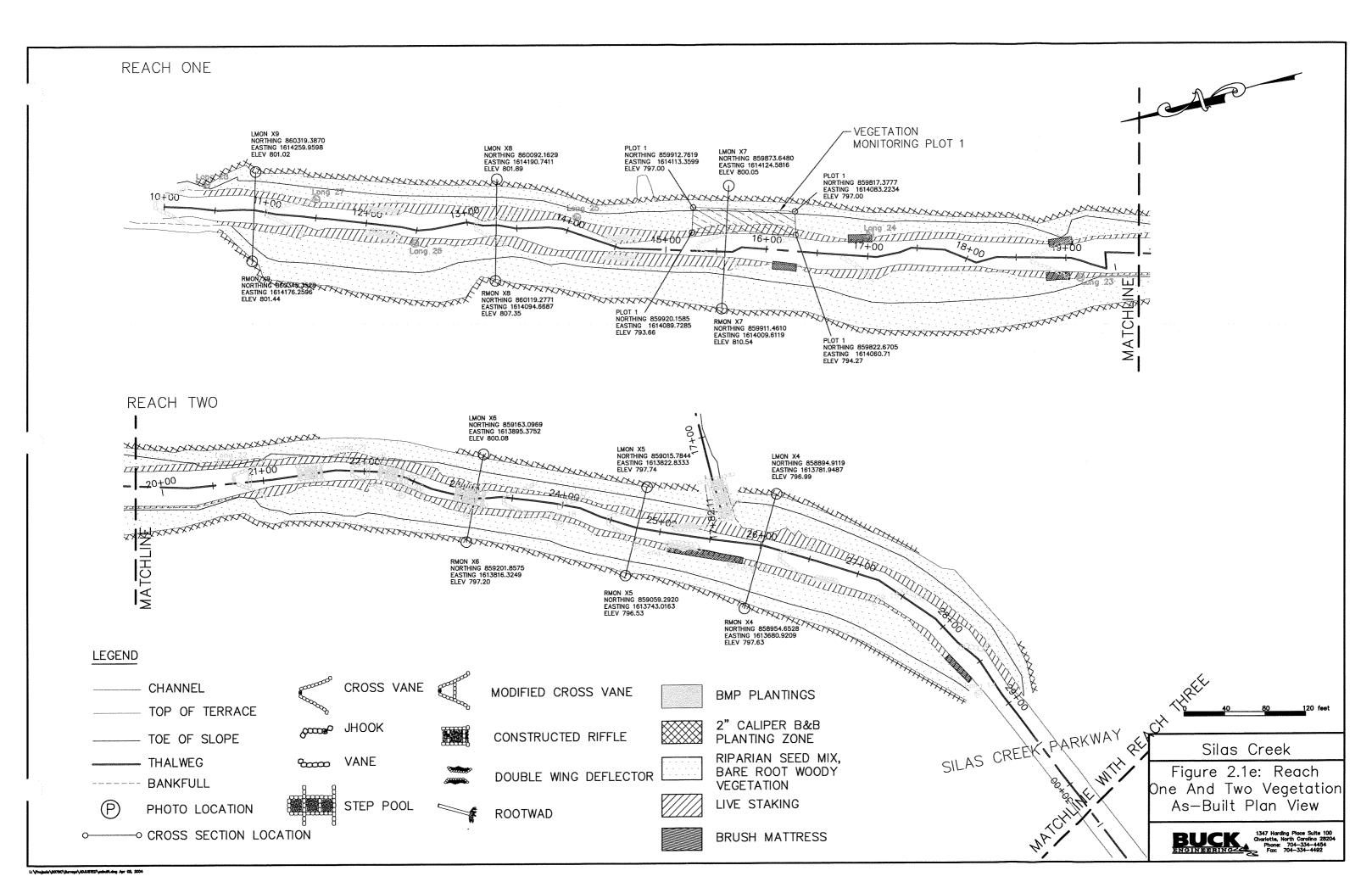
BUENA VISTA

STATION	STRUCTURE	ELEVATION
10+33.83	ROCK VANE	796.09
10+76.47	CONSTRUCTED RIFFLE	796.29
11+02.39	ROCK VANE	795.62
11+45.86	CONSTRUCTED RIFFLE	795.83
12+03.67	ROCK VANE	795.23
12+37.72	CONSTRUCTED RIFFLE	795.38
12+73.15	ROCK VANE	795.15
13+00.60	ROCK VANE	794.57
13+33.96	CONSTRUCTED RIFFLE	794.99
13+58.42	J-HOOK	794.79
13+91.89	ROCK VANE	794.82
14+42.46	CONSTRUCTED RIFFLE	794.47
14+71.09	J-HOOK	794.39
15+02.10	ROCK VANE	794.31
15+23.78	CONSTRUCTED RIFFLE	793.98
15+70.66	ROCK VANE	796.20
15+89.51	ROCK VANE	795.41
17+77.78	STEP POOL	789.41

LEGEND

CHANNEL
TOP OF TERRACE
TOE OF SLOPE
THALWEG
BANKFULL
P PHOTO LOCATION

CROSS VANE
MODIFIED CROSS VANE
CONSTRUCTED RIFFLE
DOUBLE WING DEFLECTOR
ROOTWAD



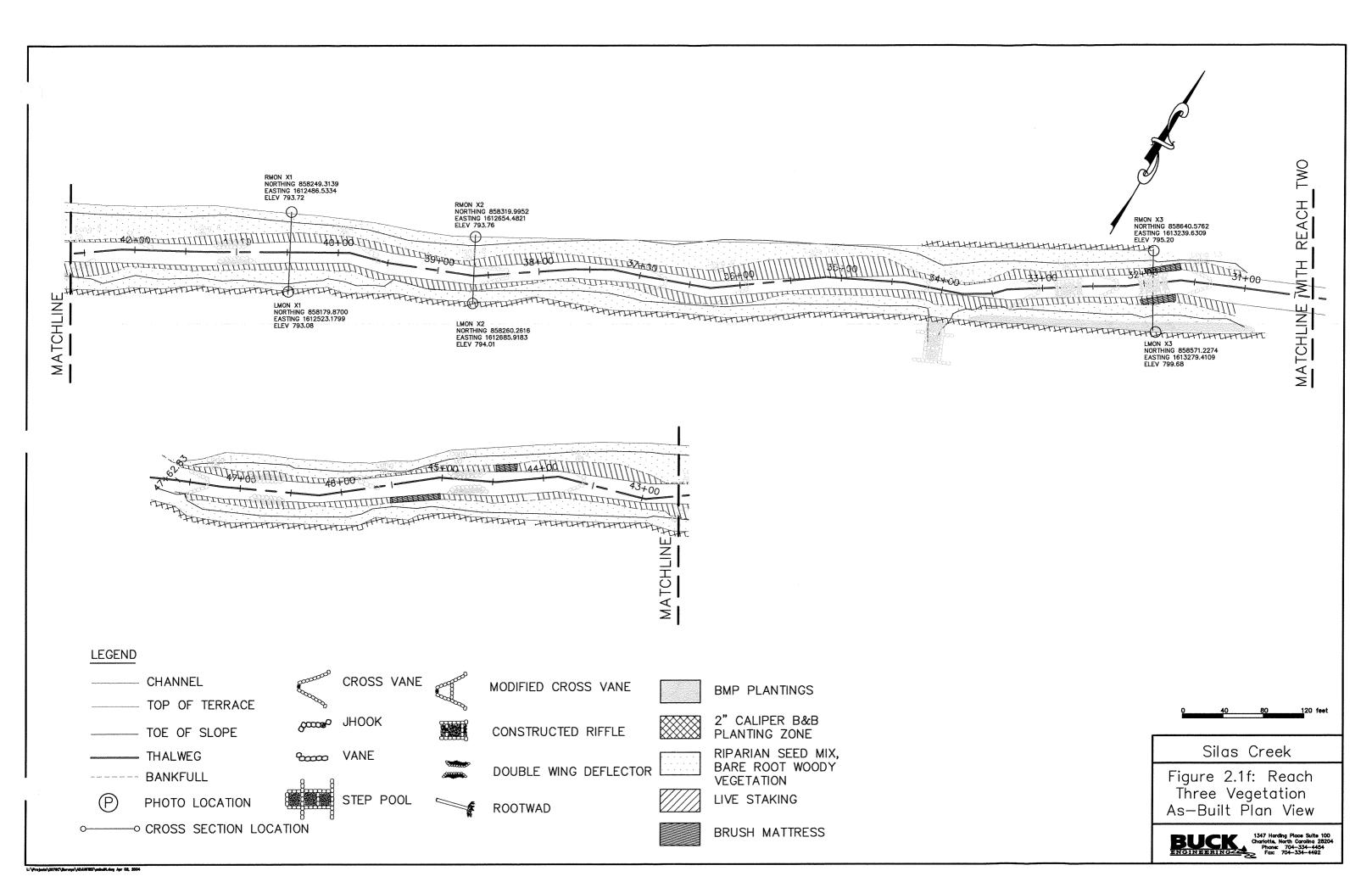
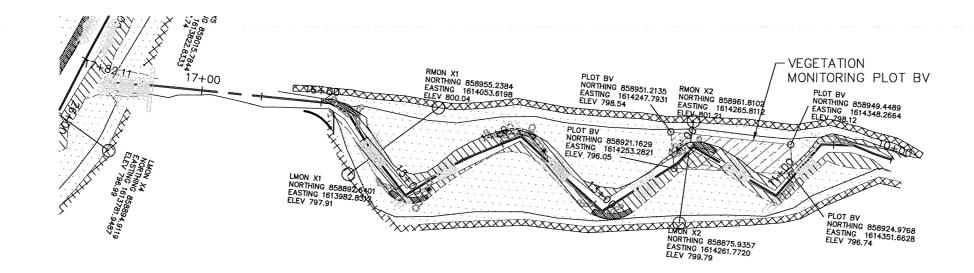

Silas Creek

Figure 2.1d: Buena Vista As—Built Plan View



----- CROSS SECTION LOCATION

CROSS VANE **CHANNEL** MODIFIED CROSS VANE BMP PLANTINGS TOP OF TERRACE 2" CALIPER B&B PLANTING ZONE Some JHOOK TOE OF SLOPE CONSTRUCTED RIFFLE RIPARIAN SEED MIX, BARE ROOT WOODY THALWEG ºwww VANE DOUBLE WING DEFLECTOR BANKFULL **VEGETATION** LIVE STAKING STEP POOL PHOTO LOCATION ROOTWAD

LEGEND

→ CROSS SECTION LOCATION

BRUSH MATTRESS

Silas Creek

Figure 2.1g: Buena Vista Vegetation As-Built Plan View

